R 代码积累不定期更新
1.阶乘、递归、reduce、sprintf
#NO.1 # 阶乘函数 fact <- function(n){ if(n==0) return(1) #基例在这 else return(n*fact(n-1)) } #1+2!+3!+...+20!的和 #测试 Reduce(‘+‘, lapply(1:3,fact)) 结果是9 Reduce(‘+‘, lapply(1:20,fact)) #NO.2 #判断101-200之间有多少个素数,并输出所有素数 is.prime <- function(num) { if (num == 2) { TRUE } else if (any(num %% 2:(num-1) == 0)) { FALSE } else { TRUE } } #101共有多少个素数 Reduce(‘+‘, lapply(101:200,is.prime)) #打印出每一个素数 for(i in 101:200){ if(!is.prime(i)) next print(sprintf(‘%d 是素数 %s‘,i,is.prime(i))) }
2.MD5加密卡号
library(magrittr) library(digest) library(data.table) library(readxl) library(lubridate) dat=read_excel(‘data_union.xlsx‘,sheet=4) dim(dat) get_len <- function(a){ return(paste0(nchar(a),a)) } dat$card_len=lapply(dat$bank_card, get_len)%>%unlist() dat$card_md5 <- lapply(dat$card_len, digest, algo="md5",serialize=F)%>%unlist() dat$card_md5_upper <- toupper(dat$card_md5) write.table( dat[,c(‘card_md5_upper‘)] ,‘yqb_card_md5.txt‘,row.names = F ,col.names=F ,quote = F) #ym_apply dat$ym_apply=dat$time %m-% months(1)%>% format("%Y%m")%>%as.numeric() #write out card_md5 and ym_apply write.table( dat[c(‘card_md5_upper‘,‘ym_apply‘)] ,sep=‘,‘ ,‘yqb_card_ym_md5.txt‘,row.names = F ,col.names=F ,quote = F) unique(dat$ym_apply)
3.时间函数
https://cran.r-project.org/web/packages/lubridate/vignettes/lubridate.html
4.随机森林可视化
library(randomForest) library(kernlab) # spam数据集 来源于这个 包 library(magrittr) library(caret) #setwd(‘...‘) #data <- read.csv(‘...‘) data(spam) #加载数据集 # spam 是一个数据集,一条记录代表一封邮件包含哪些特殊词 # ,这封邮件是否是垃圾邮件(y变量)等等一些变量 View(spam) table(spam$type) #看一下Y变量的分布,是否存在不均衡(imbalanced data) #type 是y变量 也可以是0,1,但注意,如果你的数据集是 df, 要预先 将y变量转换为factor ,df$y <- as.factor(df$y) set.seed(2016) #为使模型可再现,这里预先设定随机种子,因为随机森林的 每棵树对行是进行随机有放回的抽样的 rf <- randomForest(type~. ,data=spam ,importance=TRUE #保留变量的重要性 TURE的时候,可通过rf$importance 查看 ,proximity=FALSE #在n棵树种,一个矩阵任意两条记录 落在同一个叶子节点的概率,可以表示两条记录的相似程度 ,ntree=500 #种多少棵树 ,do.trace=20 #每20条显示 误分率 ,na.action=na.omit#一行中只要存在一个NA,这条记录就删掉 ,strata=spam$type #按照Y变量中(0,1的比例,进行上下采样,对占比少的用oversampling,对占比多的用downsampling) ,sampsize=c(1500,1500) #对0,1采样的个数分别是多少,都是有放回的 ,mtry=7 #每一棵决策树,选取几个feature?,对于classification 一般是feature总数的开平方(这个是default) ,keep.forest=FALSE) #保留每一棵数 rf$confusion #混淆矩阵 ##变量重要性,如果你的数据是有上千个变量,可以根据变量的重要性对数据进行降维 par(mfrow = c(2,2)) for(i in 1:4){ plot(sort(rf$importance[,i],decreasing =TRUE)%>%head(20) ,type=‘h‘ ,main=paste0(colnames(rf$importance)[i]) ,xlab=‘variable‘ ,ylab=‘importance‘) text(sort(rf$importance[,i],decreasing =TRUE) ,labels=names(sort(rf$importance[,i]))%>%head(20) ,pos=1 ,cex=0.9) } ## 下面画ROC 曲线,计算AUC library(ROCR) predictions=as.vector(rf$votes[,2]) pred=prediction(predictions,spam$type) perf_AUC=performance(pred,"auc") #Calculate the AUC value [email protected][[1]] perf_ROC=performance(pred,"tpr","fpr") #plot the actual ROC curve plot(perf_ROC, main="ROC plot") text(0.5,0.5,paste("AUC = ",format(AUC, digits=5, scientific=FALSE))) #cutoff accuracy perf <- performance(pred, measure="acc", x.measure="cutoff") # Get the cutoff for the best accuracy bestAccInd <- which.max([email protected]"y.values"[[1]]) bestMsg <- paste("best accuracy=", [email protected]"y.values"[[1]][bestAccInd], " at cutoff=", round([email protected]"x.values"[[1]][bestAccInd], 4)) plot(perf, sub=bestMsg) abline(v=round([email protected]"x.values"[[1]][bestAccInd], 4)) # calculate the confusion matrix and plot cm <- confusionMatrix(rf$predicted, reference = spam$type) draw_confusion_matrix(cm) #confusion matrix visualization draw_confusion_matrix <- function(cm) { layout(matrix(c(1,1,2))) par(mar=c(2,2,2,2)) plot(c(100, 345), c(300, 450), type = "n", xlab="", ylab="", xaxt=‘n‘, yaxt=‘n‘) title(‘CONFUSION MATRIX‘, cex.main=2) # create the matrix rect(150, 430, 240, 370, col=‘#3F97D0‘) text(195, 435, rf$classes[1], cex=1.2) rect(250, 430, 340, 370, col=‘#F7AD50‘) text(295, 435, rf$classes[2], cex=1.2) text(125, 370, ‘Predicted‘, cex=1.3, srt=90, font=2) text(245, 450, ‘Actual‘, cex=1.3, font=2) rect(150, 305, 240, 365, col=‘#F7AD50‘) rect(250, 305, 340, 365, col=‘#3F97D0‘) text(140, 400, rf$classes[1], cex=1.2, srt=90) text(140, 335, rf$classes[2], cex=1.2, srt=90) # add in the cm results res <- as.numeric(cm$table) text(195, 400, res[1], cex=1.6, font=2, col=‘white‘) text(195, 335, res[2], cex=1.6, font=2, col=‘white‘) text(295, 400, res[3], cex=1.6, font=2, col=‘white‘) text(295, 335, res[4], cex=1.6, font=2, col=‘white‘) # add in the specifics plot(c(100, 0), c(100, 0), type = "n", xlab="", ylab="", main = "DETAILS", xaxt=‘n‘, yaxt=‘n‘) text(10, 85, names(cm$byClass[1]), cex=1.2, font=2) text(10, 70, round(as.numeric(cm$byClass[1]), 3), cex=1.2) text(30, 85, names(cm$byClass[2]), cex=1.2, font=2) text(30, 70, round(as.numeric(cm$byClass[2]), 3), cex=1.2) text(50, 85, names(cm$byClass[5]), cex=1.2, font=2) text(50, 70, round(as.numeric(cm$byClass[5]), 3), cex=1.2) text(70, 85, names(cm$byClass[6]), cex=1.2, font=2) text(70, 70, round(as.numeric(cm$byClass[6]), 3), cex=1.2) text(90, 85, names(cm$byClass[7]), cex=1.2, font=2) text(90, 70, round(as.numeric(cm$byClass[7]), 3), cex=1.2) # add in the accuracy information text(30, 35, names(cm$overall[1]), cex=1.5, font=2) text(30, 20, round(as.numeric(cm$overall[1]), 3), cex=1.4) text(70, 35, names(cm$overall[2]), cex=1.5, font=2) text(70, 20, round(as.numeric(cm$overall[2]), 3), cex=1.4) }
时间: 2024-10-23 13:31:06