Tagged Pointer

前言

在2013年9月,苹果推出了iPhone5s,与此同时,iPhone5s配备了首个采用64位架构的A7双核处理器,为了节省内存和提高执行效率,苹果提出了Tagged Pointer的概念。对于64位程序,引入Tagged Pointer后,相关逻辑能减少一半的内存占用,以及3倍的访问速度提升,100倍的创建、销毁速度提升。本文从Tagged Pointer试图解决的问题入手,带领读者理解Tagged Pointer的实现细节和优势,最后指出了使用时的注意事项。

问题

我们先看看原有的对象为什么会浪费内存。假设我们要存储一个NSNumber对象,其值是一个整数。正常情况下,如果这个整数只是一个NSInteger的普通变量,那么它所占用的内存是与CPU的位数有关,在32位CPU下占4个字节,在64位CPU下是占8个字节的。而指针类型的大小通常也是与CPU位数相关,一个指针所占用的内存在32位CPU下为4个字节,在64位CPU下也是8个字节。

所以一个普通的iOS程序,如果没有Tagged Pointer对象,从32位机器迁移到64位机器中后,虽然逻辑没有任何变化,但这种NSNumber、NSDate一类的对象所占用的内存会翻倍。如下图所示:

我们再来看看效率上的问题,为了存储和访问一个NSNumber对象,我们需要在堆上为其分配内存,另外还要维护它的引用计数,管理它的生命期。这些都给程序增加了额外的逻辑,造成运行效率上的损失。

Tagged Pointer

为了改进上面提到的内存占用和效率问题,苹果提出了Tagged Pointer对象。由于NSNumber、NSDate一类的变量本身的值需要占用的内存大小常常不需要8个字节,拿整数来说,4个字节所能表示的有符号整数就可以达到20多亿(注:2^31=2147483648,另外1位作为符号位),对于绝大多数情况都是可以处理的。

所以我们可以将一个对象的指针拆成两部分,一部分直接保存数据,另一部分作为特殊标记,表示这是一个特别的指针,不指向任何一个地址。所以,引入了Tagged Pointer对象之后,64位CPU下NSNumber的内存图变成了以下这样:

对此,我们也可以用 Xcode做实验来验证。我们的实验代码如下:

int main(int argc, char * argv[])
{
    @autoreleasepool {
        NSNumber *number1 = @1;
        NSNumber *number2 = @2;
        NSNumber *number3 = @3;
        NSNumber *numberFFFF = @(0xFFFF);

        NSLog(@"number1 pointer is %p", number1);
        NSLog(@"number2 pointer is %p", number2);
        NSLog(@"number3 pointer is %p", number3);
        NSLog(@"numberffff pointer is %p", numberFFFF);
        return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));
    }
}

在该代码中,我们将几个Number类型的指针的值直接输出。需要注意的是,我们需要将模拟器切换成 64位的CPU来测试,如下图所示:

运行之后,我们得到的结果如下,可以看到,除去最后的数字最末尾的2以及最开头的0xb,其它数字刚好表示了相应NSNumber的值。

number1 pointer is 0xb000000000000012
number2 pointer is 0xb000000000000022
number3 pointer is 0xb000000000000032
numberFFFF pointer is 0xb0000000000ffff2

可见,苹果确实是将值直接存储到了指针本身里面。我们还可以猜测,数字最末尾的2以及最开头的0xb是否就是苹果对于Tagged Pointer的特殊标记呢?我们尝试放一个8字节的长的整数到NSNumber实例中,对于这样的实例,由于Tagged Pointer无法将其按上面的压缩方式来保存,那么应该就会以普通对象的方式来保存,我们的实验代码如下:

NSNumber *bigNumber = @(0xEFFFFFFFFFFFFFFF);
NSLog(@"bigNumber pointer is %p", bigNumber);

运行之后,结果如下,验证了我们的猜测,bigNumber的地址更像是一个普通的指针地址,和它本身的值看不出任何关系:

bigNumber pointer is 0x10921ecc0

可见,当8字节可以承载用于表示的数值时,系统就会以Tagged Pointer的方式生成指针,如果8字节承载不了时,则又用以前的方式来生成普通的指针。关于以上关于Tag Pointer的存储细节,我们也可以在这里找到相应的讨论,但是其中关于Tagged Pointer的实现细节与我们的实验并不相符,笔者认为可能是苹果更改了具体的实现细节,并且这并不影响Tagged Pointer我们讨论Tagged Pointer本身的优点。

特点

我们也可以在WWDC2013的《Session 404 Advanced in Objective-C》视频中,看到苹果对于Tagged Pointer特点的介绍:

  1. Tagged Pointer专门用来存储小的对象,例如NSNumberNSDate
  2. Tagged Pointer指针的值不再是地址了,而是真正的值。所以,实际上它不再是一个对象了,它只是一个披着对象皮的普通变量而已。所以,它的内存并不存储在堆中,也不需要malloc和free。
  3. 在内存读取上有着3倍的效率,创建时比以前快106倍。

由此可见,苹果引入Tagged Pointer,不但减少了64位机器下程序的内存占用,还提高了运行效率。完美地解决了小内存对象在存储和访问效率上的问题。

isa指针

Tagged Pointer的引入也带来了问题,即Tagged Pointer因为并不是真正的对象,而是一个伪对象,所以你如果完全把它当成对象来使,可能会让它露马脚。比如我在《Objective-C对象模型及应用》一文中就写道,所有对象都有 isa 指针,而Tagged Pointer其实是没有的,因为它不是真正的对象。 因为不是真正的对象,所以如果你直接访问Tagged Pointerisa成员的话,在编译时将会有如下警告:

对于上面的写法,应该换成相应的方法调用,如 isKindOfClass 和 object_getClass。只要避免在代码中直接访问对象的isa变量,即可避免这个问题。

总结

苹果将Tagged Pointer引入,给64位系统带来了内存的节省和运行效率的提高。Tagged Pointer通过在其最后一个bit位设置一个特殊标记,用于将数据直接保存在指针本身中。因为Tagged Pointer并不是真正的对象,我们在使用时需要注意不要直接访问其isa变量。

参考:http://www.infoq.com/cn/articles/deep-understanding-of-tagged-pointer/

时间: 2024-07-30 05:51:45

Tagged Pointer的相关文章

iOS-Tagged Pointer对象-注意事项

一,2013年9月,苹果推出了iPhone5s,与此同时,iPhone5s配备了首个采用64位架构的A7双核处理器,为了节省内存和提高执行效率,苹果提出了Tagged Pointer的概念. 对于64位程序,引入Tagged Pointer后,相关逻辑能减少一半的内存占用,并有3倍的访问速度提升,以及100倍的创建,销毁速度提升. 二,当8字节可以承载用于表示的数值时,系统就会以Tagged Pointer的方式生成指针,如果8字节承载不了时,则又用以前的方式来生成普通的指针. 三,Tagged

【读书笔记】iOS-Tagged Pointer对象-注意事项

一,2013年9月,苹果推出了iPhone5s,与此同一时候,iPhone5s配备了首个採用64位架构的A7双核处理器.为了节省内存和提高运行效率,苹果提出了Tagged Pointer的概念. 对于64位程序.引入Tagged Pointer后.相关逻辑能降低一半的内存占用,并有3倍的訪问速度提升,以及100倍的创建.销毁速度提升. 二,当8字节能够承载用于表示的数值时.系统就会以Tagged Pointer的方式生成指针.假设8字节承载不了时,则又用曾经的方式来生成普通的指针. 三,Tagg

深入解析 ObjC 中方法的结构

因为 ObjC 的 runtime 只能在 Mac OS 下才能编译,所以文章中的代码都是在 Mac OS,也就是 x86_64 架构下运行的,对于在 arm64 中运行的代码会特别说明. 在上一篇分析 isa 的文章从 NSObject 的初始化了解 isa中曾经说到过实例方法被调用时,会通过其持有 isa 指针寻找对应的类,然后在其中的 class_data_bits_t 中查找对应的方法,在这一篇文章中会介绍方法在 ObjC 中是如何存储方法的. 这篇文章的首先会根据 ObjC 源代码来分

OC深入知识点

这两个月看了些OC底层一点的东西,还是有很多不明白的,为了加深印象,记录如下: 1.对象A的引用计数值存储于一张全局散列表中(未考虑tagged pointer优化),以A的地址&A为key,引用计数值减1为value.当A进行retain时,在全局散列表中根据&A找到对应的引用计数值,将其加1. 2.__weak修饰的所有对象存储于一张全局散列表中,例如A对象,若有__weak obj1 = A; __weak obj2 = A,则散列表中用&A为键,以一个类似数组的对象为val

ARC内存管理中容易忽略的问题

目录: 一.字符串(String) 1.1.字符串的创建 1.2.字符串的isa 二.拷贝(copy) 2.1.immutable对象的copy 2.2.mutable对象的copy 2.3.浅拷贝与深拷贝 2.4 .单层深拷贝 三. 集合(Collections) 3.1.NSMapTable 3.2.NSHashTable 3.3.NSPointerArray 一.字符串(String) 看到好几篇文章都在说这道面试题,字符串差不多是每个高级语言必有的,在实际项目中也的确是使用的最多类型之一

何时使用Swift Structs和Classes

Swift 圈中有一个被反复讨论的话题是:何时使用struct,何时使用class.我觉得今天我也要给出我的个人观点. 值 VS 引用 答案真的很简单了:当你需要用值语义的时候使用class,需要用引用语义使用struct.就是这样! 我们下周再见- 等下 干啥? 还没回答我的问题呢 你啥意思?答案不明摆着么? 哦,但是- 啥? 什么是值/引用语义? 哦我明白了,我可能接下来会探讨下. 还有他们是如何关联到class和struct上的 嗯 所有都归根结底到数据以及数据存储的位置.我们把东西存在局

weak 弱引用的实现方式

来源:冬瓜争做全栈瓜 链接:https://desgard.com/weak/ 对于 runtime 的分析还有很长的路,最近在写 block 系列的同时,也回顾一下之前疏漏的细节知识.这篇文章是关于 weak 的具体实现的学习笔记. runtime 对 __weak 弱引用处理方式 切入主题,这里笔者使用的 runtime 版本为 objc4-680.tar.gz. 我在入口文件 main.m 中加入如下代码: int main(int argc, const char * argv[]) {

用 C 语言编写一个简单的垃圾回收器

人们似乎认为编写垃圾回收机制是很难的,是一种只有少数智者和Hans Boehm(et al)才能理解的高深魔法.我认为编写垃圾回收最难的地方就是内存分配,这和阅读K&R所写的malloc样例难度是相当的. 在开始之前有一些重要的事情需要说明一下:第一,我们所写的代码是基于Linux Kernel的,注意是Linux Kernel而不是GNU/Linux.第二,我们的代码是32bit的.第三,请不要直接使用这些代码.我并不保证这些代码完全正确,可能其中有一些我 还未发现的小的bug,但是整体思路仍

NSString与NSMutableString的浅拷贝与深拷贝

浅拷贝:指针拷贝,指针与原指针地址相同,没有创建新的对象. 深拷贝:内容拷贝,创建了新的对象,指针地址与原对象的指针地址不同. NSString测试代码如下 打印结果如下(后面打印出的两个NSCFConstanaString与NSCFString是打印出系统底层实现时调用方法的类) 设置一个断点来鼠标放到变量上查看结果如下     从上面左图可以看出copyStr1它的真实类型为不可变字符串,右图可以看出copyStr2为真实类型为可变字符串.从打印地址来看只有最后一个地址不同. 结论:对一个N