题目:
Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place.
Follow up:
Did you use extra space? A straight forward solution using O(mn) space is probably a bad idea. A simple improvement uses O(m + n) space, but still not the best solution. Could you devise a constant space solution?
代码:
题目很简单,就是矩阵中如果存在值为0的元素,就把该元素对应的行和列上面的元素全都改成0。
思考了半天,还是遍历了两遍,复杂度至少在O(mn):
public void setZeroes(int[][] matrix) {
int i,j;
ArrayList<Integer> row = new ArrayList<Integer>();
ArrayList<Integer> col = new ArrayList<Integer>();
//第一个循环,遍历一遍,记录哪些行和哪些列需要改成0
for (i=0;i < matrix.length;i++)
{
for (j=0;j<matrix[i].length;j++)
{
if(matrix[i][j] == 0)
{
row.add(i);
col.add(j);
}
}
}
//第二个循环,又遍历一遍,根据需要变为0的行和列修改对应元素
for (i=0;i < matrix.length;i++)
{
for (j=0;j<matrix[i].length;j++)
{
if(row.contains(i)||col.contains(j))
{
matrix[i][j] =0;
// System.out.print("修改第"+i+"行,第"+j+"列");
}
}
}
}
题目中提到算法复杂度可以小于 O(m + n),还在研究中...