迪杰斯特拉

const int maxn=10000+5;
const int INF=1e9;
int mat[maxn][maxn];
int visit[maxn],dis[maxn];
int n;

int dijkstra(int a,int b)    //a到b的最短路径
{
    memset(visit,0,sizeof(visit));
    for(int i = 1; i <= n; i++)
        dis[i] = mat[a][i];       //最初的源点赋值
    visit[a] =  true;
    for(int i = 1; i <= n; i++)
    {
        int Min = INF;
        int pos;
        for(int j = 1; j <= n; j++) //找的最近的点当中转点
            if(Min > dis[j] && visit[j] == 0)
            {
                Min = dis[j];
                pos = j;
            }
        visit[pos] = true;          //避免重复访问
        for(int j = 1; j <= n; j++)
            if(dis[j] > dis[pos] + mat[pos][j] && visit[j] == 0)  //松弛
                dis[j] = dis[pos] + mat[pos][j];
    }
    return dis[b];
}

  

时间: 2024-12-31 19:17:05

迪杰斯特拉的相关文章

最短路径算法——迪杰斯特拉算法(Dijkstra)

图结构中应用的最多的就是最短路径的查找了,关于最短路径查找的算法主要有两种:迪杰斯特拉算法(Dijkstra)和Floyd算法. 其中迪杰斯特拉算法(Dijkstra)实现如下: 原理就是不断寻找当前的最优解: void main() { int V[Max][Max]={0,8,32,Infinity,Infinity, 12,0,16,15,Infinity, Infinity,29,0,Infinity,13, Infinity,21,Infinity,0,7, Infinity,Infi

迪杰斯特拉算法——PAT 1003

本文主要是将我对于我对于迪杰斯特拉算法的理解写出来,同时通过例题来希望能够加深对于算法的理解,其中有错误的地方希望大家指正. 迪杰斯特拉算法 我将这个算法理解成一个局部到整体的算法,这个方法确实越研究就会发现越经典. 首先可以将整个图的节点看成两个集合:一个是S,一个是U-S.如果是求v0到图中各点的最短距离的话,那么S就是已经确认到v0距离最短的点,U-S则是对于整体的点集合U,还没有加入S集合的点. 这里提出一个算法总体的思想,将所有的点按照一定的原则加入到S集就是解集.而这个解法就是重点了

数据结构之单源最短路径(迪杰斯特拉算法)-(九)

最开始接触最短路径是在数据结构中图的那个章节中.运用到实际中就是我在大三参加的一次美赛中,解决中国的水资源问题.所谓单源最短路径,就是一个起点到图中其他节点的最短路径,这是一个贪心算法. 迪杰斯特拉算法原理(百科): 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的集合(初始时只含有源点V0) (2)V-S=T:尚未确定的顶点集合 将T中顶点按递增的次序加入到S中,保证: (1)从源点V0到S中其他各顶点的长度都不大于从V0到T中任何顶点的最短路径长度 (2)每个顶

最短路 迪杰斯特拉.cpp

<span style="color:#3333ff;">#include<stdio.h> #include<stdlib.h> #define INITITY 999//最大值 #define VERTEX 20//最多顶点个数 #define FALSE 0 #define TURE 1 #define size 30 #define OVERFLOW -1 typedef struct ArcCell{ int adj;//权值类型 }Arc

迪杰斯特拉算法介绍

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算). 此外,引进两个集合S和U.S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离). 初始时,S中只有起点s:U中是除s之外的顶点,并且U中顶点的路径是"起点s

hdu 1142(迪杰斯特拉+记忆化搜索)

A Walk Through the Forest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 7330    Accepted Submission(s): 2687 Problem Description Jimmy experiences a lot of stress at work these days, especiall

hdu 3339 In Action(迪杰斯特拉+01背包)

In Action Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5102    Accepted Submission(s): 1696 Problem Description Since 1945, when the first nuclear bomb was exploded by the Manhattan Project t

迪杰斯特拉(Dijkstra)算法

1 # include <stdio.h> 2 3 # define MAX_VERTEXES 20//最大顶点数 4 # define INFINITY 65535;//代表∞ 5 6 typedef struct 7 {/* 无向图结构体 */ 8 int vexs[MAX_VERTEXES];//顶点下标 9 int arc[MAX_VERTEXES][MAX_VERTEXES];//矩阵 10 int numVertexes, numEdges;//顶点数和边数 11 12 }MGra

最短路径之迪杰斯特拉(Dijkstra)算法

对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,并且我们称路径上的第一个顶点为源点,最后一个顶点为终点.最短路径的算法主要有迪杰斯特拉(Dijkstra)算法和弗洛伊德(Floyd)算法.本文先来讲第一种,从某个源点到其余各顶点的最短路径问题. 这是一个按路径长度递增的次序产生最短路径的算法,它的大致思路是这样的. 初始时,S中仅含有源.设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度.D

图(最短路径算法————迪杰斯特拉算法和弗洛伊德算法).RP

文转:http://blog.csdn.net/zxq2574043697/article/details/9451887 一: 最短路径算法 1. 迪杰斯特拉算法 2. 弗洛伊德算法 二: 1. 迪杰斯特拉算法 求从源点到其余各点的最短路径 依最短路径的长度递增的次序求得各条路径 路径长度最短的最短路径的特点: 在这条路径上,必定只含一条弧,并且这条弧的权值最小. 下一条路径长度次短的最短路径的特点: 它只可能有两种情况:或是直接从源点到该点(只含一条弧):或者是从源点经过顶点v1,再到达该顶