cnn 文章

http://www.cnblogs.com/fengfenggirl/p/cnn_implement.html

http://www.2cto.com/kf/201603/493553.html

http://blog.csdn.net/real_myth/article/details/52273930

http://blog.csdn.net/gshgsh1228/article/details/52145099  CNN卷积神经网络的理解

时间: 2024-10-11 23:06:36

cnn 文章的相关文章

数据集搜集整理

1. CIFAR-10 & CIFAR-100 CIFAR-10包含10个类别,50,000个训练图像,彩色图像大小:32x32,10,000个测试图像. (类别:airplane,automobile, bird, cat, deer, dog, frog, horse, ship, truck) (作者:Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton) (数据格式:Python版本.Matlab版本.二进制版本<for C程序>)

自然语言处理中CNN模型几种常见的Max Pooling操作

/* 版权声明:可以任意转载,转载时请标明文章原始出处和作者信息 .*/ author: 张俊林 CNN是目前自然语言处理中和RNN并驾齐驱的两种最常见的深度学习模型.图1展示了在NLP任务中使用CNN模型的典型网络结构.一般而言,输入的字或者词用Word Embedding的方式表达,这样本来一维的文本信息输入就转换成了二维的输入结构,假设输入X包含m个字符,而每个字符的Word Embedding的长度为d,那么输入就是m*d的二维向量. 图1 自然语言处理中CNN模型典型网络结构 这里可以

深度学习与自然语言处理之四:卷积神经网络模型(CNN)

/* 版权声明:可以任意转载,转载时请标明文章原始出处和作者信息 .*/ author: 张俊林 大纲如下: 1.CNN基础模型 2.单CNN模型的改进    2.1对输入层的改进    2.2Convolution层的改进    2.3Sub-Sampling层的改进    2.4全连接层的改进 3.多CNN模型的改进 4.探讨与思考 扫一扫关注微信号:"布洛卡区" ,深度学习在自然语言处理等智能应用的技术研讨与科普公众号.

CNN卷积神经网络的改进(15年最新paper)

回归正题,今天要跟大家分享的是一些 Convolutional Neural Networks(CNN)的工作. 大家都知道,CNN 最早提出时,是以一定的人眼生理结构为基础,然后逐渐定下来了一些经典的架构--convolutional 和 pooling 的交替,最后再加上几个 fully-connected layers 用作最后做 prediction 等的输出.然而,假设我们能"反思"经典,深入剖析这些经典架构中的不同 component 的作用.甚至去改进它们,有时候可能有许

CNN卷积神经网络新想法

最近一直在看卷积神经网络,想改进改进弄出点新东西来,看了好多论文,写了一篇综述,对深度学习中卷积神经网络有了一些新认识,和大家分享下. 其实卷积神经网络并不是一项新兴的算法,早在上世纪八十年代就已经被提出来,但当时硬件运算能力有限,所以当时只用来识别支票上的手写体数字,并且应用于实际.2006年深度学习的泰斗在<科学>上发表一篇文章,论证了深度结构在特征提取问题上的潜在实力,从而掀起了深度结构研究的浪潮,卷积神经网络作为一种已经存在的.有一定应用经验的深度结构,重新回到人们视线,此时硬件的运算

卷积神经网络(CNN)学习算法之----基于LeNet网络的中文验证码识别

由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013+Python2.7.12环境下的Caffe配置学习 >文章,记录下利用caffe进行中文验证码图片识别的开发过程.由于这里主要介绍开发和实现过程,CNN理论性的东西这里作为介绍的重点,遇到相关的概念和术语请自行研究.目前从我们训练出来的模型来看,单字识别率接近96%,所以一个四字验证码的准确率大概80%,效果还不错,完全能满足使用,如果

卷积神经网络CNN在自然语言处理中的应用

卷积神经网络(Convolution Neural Network, CNN)在数字图像处理领域取得了巨大的成功,从而掀起了深度学习在自然语言处理领域(Natural Language Processing, NLP)的狂潮.2015年以来,有关深度学习在NLP领域的论文层出不穷.尽管其中必定有很多附庸风雅的水文,但是也存在很多经典的应用型文章.笔者在2016年也发表过一篇关于CNN在文本分类方面的论文,今天写这篇博客的目的,是希望能对CNN的结构做一个比较清晰的阐述,同时就目前的研究现状做一个

深度卷积网络CNN与图像语义分割

转载请注明出处: http://xiahouzuoxin.github.io/notes/ 级别1:DL快速上手 级别2:从Caffe着手实践 级别3:读paper,网络Train起来 级别3:Demo跑起来 读一些源码玩玩 熟悉Caffe接口,写Demo这是硬功夫 分析各层Layer输出特征 级别4:何不自己搭个CNN玩玩 级别5:加速吧,GPU编程 关于语义分割的一些其它工作 说好的要笔耕不缀,这开始一边实习一边找工作,还摊上了自己的一点私事困扰,这几个月的东西都没来得及总结一下.这就来记录

深度学习之在iOS上运行CNN

1 引言 作为曾经的iOS开发者,在研究深度学习的时候,总有一个想法就是在iPhone上运行深度学习,不管是在手机上训练还是利用训练好的数据进行测试. 因为iOS的开发环境支持C++,因此,只要你的代码是C/C++,本质上就可以在iOS上运行. 怎么才能更快更好地在iOS上运行CNN呢? 2 方法1:通过Matlab转码 Matlab自带转成c的工具,如果你研究过UFLDL的深度学习教程,就知道如何在Matlab上使用CNN,那么,转换成c后,放到iOS的开发环境中,然后将参数存成txt格式再读