CountDownLatch、CyclicBarrier和Semaphore

CountDownLatch:

允许N个线程等待其他线程完成执行。无法进行重复使用,只能用一次。

比如有2个任务A,它要等待其他4个任务执行完毕之后才能执行,此时就可以利用CountDownLatch来实现这种功能了。

public class Test {

     public static void main(String[] args) {    

         final CountDownLatch latch = new CountDownLatch(2);

         new Thread(){

             public void run() {

                 try {

                     System.out.println("子线程"+Thread.currentThread().getName()+"正在执行");

                    Thread.sleep(3000);

                    System.out.println("子线程"+Thread.currentThread().getName()+"执行完毕");

                    latch.countDown();

                } catch (InterruptedException e) {

                    e.printStackTrace();

                }

             };

         }.start();

         new Thread(){

             public void run() {

                 try {

                     System.out.println("子线程"+Thread.currentThread().getName()+"正在执行");

                     Thread.sleep(3000);

                     System.out.println("子线程"+Thread.currentThread().getName()+"执行完毕");

                     latch.countDown();

                } catch (InterruptedException e) {

                    e.printStackTrace();

                }

             };

         }.start();

         try {

             System.out.println("等待2个子线程执行完毕...");

            latch.await();

            System.out.println("2个子线程已经执行完毕");

            System.out.println("继续执行主线程");

        } catch (InterruptedException e) {

            e.printStackTrace();

        }

     } 

}线程Thread-0正在执行线程Thread-1正在执行等待2个子线程执行完毕...线程Thread-0执行完毕线程Thread-1执行完毕2个子线程已经执行完毕继续执行主线程

CyclicBarrier

实现让N个线程等待至某个状态(达到初始化数量值)之后再全部同时执行,并且要全部线程都执行cyclicBarrier.await();后才执行线程后续逻辑。

在初次的4个线程越过barrier状态后,又可以用来进行新一轮的使用,可重复使用。

比如聚餐,一个人先到了就开始等待,又来一个。。直到全部人到期后,这是才能吃饭。

public class Test {

    public static void main(String[] args) {

        int N = 4;

        CyclicBarrier barrier  = new CyclicBarrier(N);

        for(int i=0;i<N;i++)

            new Writer(barrier).start();

    } 

    static class Writer extends Thread{

        private CyclicBarrier cyclicBarrier;

        public Writer(CyclicBarrier cyclicBarrier) {

            this.cyclicBarrier = cyclicBarrier;

        }

        @Override

        public void run() {

            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");

            try {

                Thread.sleep(5000);      //以睡眠来模拟写入数据操作

                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");

                cyclicBarrier.await();

            } catch (InterruptedException e) {

                e.printStackTrace();

            }catch(BrokenBarrierException e){

                e.printStackTrace();

            }

            System.out.println("所有线程写入完毕,继续处理其他任务...");

        }

    }

}线程Thread-0正在写入数据...线程Thread-3正在写入数据...线程Thread-2正在写入数据...线程Thread-1正在写入数据...线程Thread-2写入数据完毕,等待其他线程写入完毕线程Thread-0写入数据完毕,等待其他线程写入完毕线程Thread-3写入数据完毕,等待其他线程写入完毕线程Thread-1写入数据完毕,等待其他线程写入完毕所有线程写入完毕,继续处理其他任务...所有线程写入完毕,继续处理其他任务...所有线程写入完毕,继续处理其他任务...所有线程写入完毕,继续处理其他任务...

  从上面输出结果可以看出,每个写入线程执行完写数据操作之后,就在等待其他线程写入操作完毕。

  当所有线程线程写入操作完毕之后,所有线程就继续进行后续的操作了。

public class Test {

    public static void main(String[] args) {

        int N = 4;

        CyclicBarrier barrier  = new CyclicBarrier(N,new Runnable() {

            @Override

            public void run() {

                System.out.println("当前线程"+Thread.currentThread().getName());    

            }

        });

        for(int i=0;i<N;i++)

            new Writer(barrier).start();

    } 

    static class Writer extends Thread{

        private CyclicBarrier cyclicBarrier;

        public Writer(CyclicBarrier cyclicBarrier) {

            this.cyclicBarrier = cyclicBarrier;

        }

        @Override

        public void run() {

            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");

            try {

                Thread.sleep(5000);      //以睡眠来模拟写入数据操作

                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");

                cyclicBarrier.await();

            } catch (InterruptedException e) {

                e.printStackTrace();

            }catch(BrokenBarrierException e){

                e.printStackTrace();

            }

            System.out.println("所有线程写入完毕,继续处理其他任务...");

        }

    }

}线程Thread-0正在写入数据...线程Thread-1正在写入数据...线程Thread-2正在写入数据...线程Thread-3正在写入数据...线程Thread-0写入数据完毕,等待其他线程写入完毕线程Thread-1写入数据完毕,等待其他线程写入完毕线程Thread-2写入数据完毕,等待其他线程写入完毕线程Thread-3写入数据完毕,等待其他线程写入完毕当前线程Thread-3所有线程写入完毕,继续处理其他任务...所有线程写入完毕,继续处理其他任务...所有线程写入完毕,继续处理其他任务...所有线程写入完毕,继续处理其他任务...

从结果可以看出,当四个线程都到达barrier状态后,会从四个线程中选择一个线程去执行Runnable。

Semaphore

可以控同时访问的线程个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。

假若一个工厂有5台机器,但是有8个工人,一台机器同时只能被一个工人使用,只有使用完了,其他工人才能继续使用。那么我们就可以通过Semaphore来实现:

public class Test {

    public static void main(String[] args) {

        int N = 8;            //工人数

        Semaphore semaphore = new Semaphore(5); //机器数目

        for(int i=0;i<N;i++)

            new Worker(i,semaphore).start();

    } 

    static class Worker extends Thread{

        private int num;

        private Semaphore semaphore;

        public Worker(int num,Semaphore semaphore){

            this.num = num;

            this.semaphore = semaphore;

        }

        @Override

        public void run() {

            try {

                semaphore.acquire();

                System.out.println("工人"+this.num+"占用一个机器在生产...");

                Thread.sleep(2000);

                System.out.println("工人"+this.num+"释放出机器");

                semaphore.release();            

            } catch (InterruptedException e) {

                e.printStackTrace();

            }

        }

    }

}工人0占用一个机器在生产...工人1占用一个机器在生产...工人2占用一个机器在生产...工人4占用一个机器在生产...工人5占用一个机器在生产...工人0释放出机器工人2释放出机器工人3占用一个机器在生产...工人7占用一个机器在生产...工人4释放出机器工人5释放出机器工人1释放出机器工人6占用一个机器在生产...工人3释放出机器工人7释放出机器工人6释放出机器

下面对上面说的三个辅助类进行一个总结:

  1)CountDownLatch和CyclicBarrier都能够实现线程之间的等待,只不过它们侧重点不同:

    CountDownLatch一般用于某个线程A等待若干个其他线程执行完任务之后,它才执行;

    而CyclicBarrier一般用于一组线程互相等待至某个状态,然后这一组线程再同时执行;

    另外,CountDownLatch是不能够重用的,而CyclicBarrier是可以重用的。

  2)Semaphore其实和锁有点类似,它一般用于控制对某组资源的访问权限。

时间: 2024-12-28 16:49:46

CountDownLatch、CyclicBarrier和Semaphore的相关文章

Join,CountDownLatch,CyclicBarrier,Semaphore和Exchanger

CountDownLatch允许一个或者多个线程等待其他线程完成操作,之后再对结果做统一处理: 适用场景,分布式系统中对多个微服务的调用,并发执行并且必须等待全部执行完成才能继续执行后续操作: 其实在java中默认的实现是join()方法,join()方法主要的作用是当前线程必须等待直到join线程执行完成之后才能继续执行后续的操作, 其本质就是轮询判断join线程是否存活,如果存活则主线程继续等待,否则,通过调用this.notifyAll()方法来继续执行主线程. 实例代码如下: publi

Java并发编程:CountDownLatch、CyclicBarrier和Semaphore

在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch,CyclicBarrier和Semaphore,今天我们就来学习一下这三个辅助类的用法. 以下是本文目录大纲: 一.CountDownLatch用法 二.CyclicBarrier用法 三.Semaphore用法 若有不正之处请多多谅解,并欢迎批评指正. 请尊重作者劳动成果,转载请标明原文链接: http://www.cnblogs.com/dolphin0520/p/3920397.htm

并发工具类:CountDownLatch、CyclicBarrier、Semaphore

在多线程的场景下,有些并发流程需要人为来控制,在JDK的并发包里提供了几个并发工具类:CountDownLatch.CyclicBarrier.Semaphore. 一.CountDownLatch 1 import java.util.concurrent.CountDownLatch; 2 3 4 public class CountDownLatchTest 5 { //设置N为2 6 static CountDownLatch c = new CountDownLatch(2); 7 p

Java并发之CountDownLatch、CyclicBarrier和Semaphore

CountDownLatch 是能使一组线程等另一组线程都跑完了再继续跑:CyclicBarrier 能够使一组线程在一个时间点上达到同步,可以是一起开始执行全部任务或者一部分任务. 这次说一下 JUC 中的同步器三个主要的成员:CountDownLatch.CyclicBarrier 和 Semaphore(不知道有没有初学者觉得这三个的名字不太好记).这三个是 JUC 中较为常用的同步器,通过它们可以方便地实现很多线程之间协作的功能.(下面的代码出自 JDK 文档) CountDownLat

使用Java辅助类(CountDownLatch、CyclicBarrier、Semaphore)并发编程

在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch,CyclicBarrier和Semaphore,今天我们就来学习一下这三个辅助类的用法 一.CountDownLatch用法 CountDownLatch类位于java.util.concurrent包下,利用它可以实现类似计数器的功能.比如有一个任务A,它要等待其他4个任务执行完毕之后才能执行,此时就可以利用CountDownLatch来实现这种功能了. CountDownLatch类只提

Java多线程:CountDownLatch、CyclicBarrier 和 Semaphore

场景描述: 多线程设计过程中,经常会遇到需要等待其它线程结束以后再做其他事情的情况,比如多线程下载文件,每个线程都会下载文件的一部分,在所有线程结束以后,需要将各部分再次拼接成一个完整的文件. 有几种方案: 1.在主线程中设置一自定义全局计数标志,在工作线程完成时,计数减1.主线程侦测该标志是否为0,一旦为0,表示所有工作线程已经完成. 2.使用Java标准的类CountDownLatch来完成这项工作,原理是一样的,计数. CountDownLatch 一个同步辅助类,在完成一组正在其他线程中

多线程-CountDownLatch,CyclicBarrier,Semaphore,Exchanger,Phaser

CountDownLatch 一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待.用给定的计数初始化CountDownLatch.调用countDown()计数减一,当计数到达零之前await()方法会一直阻塞,计数无法被重置. public class CountDownLatch { private final Sync sync; public CountDownLatch(int count); public void countDown() { syn

Java并发编程:CountDownLatch、CyclicBarrier和Semaphore (总结)

下面对上面说的三个辅助类进行一个总结: 1)CountDownLatch和CyclicBarrier都能够实现线程之间的等待,只不过它们侧重点不同: CountDownLatch一般用于某个线程A等待若干个其他线程执行完任务之后,它才执行: 而CyclicBarrier一般用于一组线程互相等待至某个状态,然后这一组线程再同时执行: 另外,CountDownLatch是不能够重用的,而CyclicBarrier是可以重用的. 2)Semaphore其实和锁有点类似,它一般用于控制对某组资源的访问权

并发包下常见的同步工具类详解(CountDownLatch,CyclicBarrier,Semaphore)

目录 1. 前言 2. 闭锁CountDownLatch 2.1 CountDownLatch功能简介 2.2 使用CountDownLatch 2.3 CountDownLatch原理浅析 3.循环屏障CyclicBarrier 3.1 CyclicBarrier功能简介 3.2 使用CyclicBarrier 3.3 CyclicBarrier原理浅析 4. 信号量Semaphore 4.1 Semaphore功能简介 4.2 使用Semaphore进行最大并发数的控制 4.3 Semaph

Java并发编程:CountDownLatch、CyclicBarrier和 Semaphore

在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch,CyclicBarrier和Semaphore,今天我们就来学习一下这三个辅助类的用法. 以下是本文目录大纲: 一.CountDownLatch用法 二.CyclicBarrier用法 三.Semaphore用法 一.CountDownLatch用法 CountDownLatch类位于java.util.concurrent包下,利用它可以实现类似计数器的功能.比如有一个任务A,它要等待其他