Ext4文件系统架构分析(二)

接着上一篇博文,继续分析Ext4磁盘布局中的元数据。


1.7 超级块


超级块记录整个文件系统的大量信息,如数据块个数、inode个数、支持的特性、管理信息,等待。

如果设置sparse_super特性标志,超级块和块组描述符表的冗余备份仅存放在编号为0或3、5、7的幂次方的块组中。如果未设置sparse_super特性标志,冗余备份存在与所有的块组中。以下是2.6.32.18内核中对Ext4超级块的描述:



3.0的内核中,Ext4的超级块加入了以下相关元数据:快照、文件系统错误处理相关、挂载选项、配额文件inode、超级块校验和等,见下图。目前没有深入研究这些新的元数据。

1.8 块组描述符


一个块组中,具有固定位置的数据结构是超级块和块组描述符。其他数据结构位置都可以不固定。Flex_bg机制使用这个性质将几个块组聚合成一个flex块组,将flex_bg中所有位图和inode 表放到flex_bg的第一个块组中。详细情况可以参考我的上一篇Ext4分析博文的Flexible 块组(flex_bg)部分。


     
如果设置了meta_bg特性标志,几个块组结合成一个meta group。在meta_bg的情况下,在meta group中的第一个和最后两个块组中仅包含meta group中的块组的块组描述符。Flex_bg和Meta_bg互斥因而不能共同出现。

1.9 数据块位图与inode位图


数据块位图跟踪块组中数据块使用情况。Inode位图跟踪块组中Inode使用情况。每个位图一个数据块,每一位用0或1表示一个块组中数据块或inode表中inode的使用情况。如果一个数据块大小是4KB的话,那一个位图块可以表示4*1024*8个数据块的使用情况,这也是单个块组具有的最大数据块个数。这样可以算出一个块组大小是128MB。当然一个位图块也可以表示4*1024*8个inode的使用情况,但是实际上一个块组中即使存满了文件,也不会用到这么多的inode,因为实际系统中基本不会出现所有文件大小都小于等于1个数据块大小的情况。实际上一个块组中有多少个inode,在块组描述符中是确定的,在文件系统格式化过程中也会看到这个数值,如果没记错的话,大概是每4个还是8个数据块分配一个inode空间。

1.10 Inode表


为了找到与一个文件相关的信息,必须遍历目录文件找到与文件相关的目录项,然后加载inode找到该文件的元数据。Ext4在目录项中用一位存储了文件类型(通常存储在inode中)的拷贝,这对性能提升有益。Inode表的大小为ext4_super_block.s_inode_size * ext4_super_block.s_inodes_per_group Bytes。 


  
  
 Ext4的inode的数据结构大小为156 bytes,但是Ext4的标准inode的大小是256 bytes。

1.11 查找inode


每个块组包含ext4_super_block.s_inodes_per_group个inodes。因为0号inode不存在,可以通过如下的算式计算inode所在的块组:

bg=(inode_num -1)/ ext4_super_block.s_inodes_per_group

inode在块组中inode表中的索引index可以通过如下的算式计算:

index=(inode_num -1) % ext4_super_block.s_inodes_per_group

inode在inode表中的地址偏移为:

offset=index * ext4_super_block.s_inode _size

1.12 inode.i_block0[]s的内容


取决于文件类型,inode.i_blocks[]使用的方式不同。一般来说,常规文件和目录用inode.i_blocks[]作为文件数据块索引信息,特殊文件将inode.i_blocks[]用于特殊用途。常规文件用inode.i_blocks[]作为文件数据块索引信息的三级索引结构会在后面直接、间接块地址中详细介绍。

1.13  符号链接


如果符号链接的目标字符串长度小于60字节,那么就将其存储在inode.i_blocks[]中,inode中inode.i_blocks[]占据的大小刚好是60KB。这里要注意到的是,有些文件其内容是跟文件的元数据放在一起的,因而就没有了数据块。也就是说不是每个文件数据都必然占据着一个数据块。

1.14 直接/间接块地址


Ext2/Ext3中数据块映射方式如下表

1.15   Extent 树


Ext4中用extent树代替了逻辑块映射。使用extents,用一个struct ext4_extent结构就可以映射多个数据块,减少元数据块的使用。如果设置了flex_bg,甚至可以用一个extent分配一个非常大的文件。使用extent特性,inode必须设置extents flag。

Extents以树的方式安排。Extent树的每个节点都以一个ext4_extent_header开头,如果节点是内部节点(ext4_extent_header.eh_depth>0),ext4_extent_header后面紧跟的是ext4_extent_header .eh_entries个索引项struct ext4_extent_idx,每个索引项指向该extent树中一个包含更多的节点的数据块。如果节点是叶子节点(ext4_extent_header.eh_depth==0),ext4_extent_header后面紧跟的是ext4_extent_header .eh_entries个struct ext4_extent数据结构。这些ext4_extent结构指向文件数据块。Extent树的根结点存储在inode.i_blocks中,可以存储文件的前4个extents而不需额外的元数据块。

ext4_extent_header:

struct ext4_extent_idx:extent树的内部节点,也称为索引节点。

ext4_extent:extent树的叶子节点。

1.16 Extent树数据块校验和:可能加入的新元数据


由于extent树的根在inode中,因而Extent树数据块指extent树的除根据节点外的所有内部节点和叶子节点。Extent的树根节点和叶子节点的数据块中存储完xt4_extent_idx和xt4_extent数据结构后至少会留下4 ((2^x%12)>=4) bytes的空间。因而可以加入一个结构struct ext4_extent_tail,其中存储32位的校验和。位于inode中的4个extents无需校验和,因为inode已经做了校验和。

1.17 目录项


Ext4文件系统中,一个目录差不多是一个平面文件,映射任意长度的字符串到文件系统中的一个inode。文件系统中存在多个目录项引用同一个inode——硬链接,这也是硬链接不能链接其他文件系统中的文件的原因。

1.18 线性(经典)目录


缺省地,目录文件中包含一个线性的目录项数组。未使用的目录项标记为inode =0。Ext4文件系统默认地使用struct ext4_dir_entry_2记录目录项,除非没有设置filetype特性标志。在没有设置filetype特性标志的情况下,使用struct ext4_dir_entry记录目录项。
  

Ext4文件系统架构分析(二),布布扣,bubuko.com

时间: 2024-10-13 05:12:46

Ext4文件系统架构分析(二)的相关文章

Ext4文件系统架构分析(一)

本文描述Ext4文件系统磁盘布局和元数据的一些分析,同样适用于Ext3和Ext2文件系统,除了它们不支持的Ext4的特性外.整个分析分两篇博文,分别概述布局和详细介绍各个布局的数据结构及组织寻址方式等.感兴趣的看官敬请留意和指导! 1. Ext4文件系统布局综述 一个Ext4文件系统被分成一系列块组.为减少磁盘碎片产生的性能瓶颈,块分配器尽量保持每个文件的数据块都在同一个块组中,从而减少寻道时间.以4KB的数据块为例,一个块组可以包含32768个数据块,也就是128MB. 1.1 磁盘布局 Ex

Ext4文件系统架构分析(三) ——目录哈希、扩展属性与日志

struct dx_root Htree的内部节点: struct dx_node Htree 树根和节点中都存在的 Hash map: struct dx_entry 1.20 扩展属性EA 扩展属性(xattrs)通常存储在磁盘上的一个单独的数据块中,通过inode.i_file_acl*引用.扩展属性的第一应用是存储文件的ACL以及其他安全数据(selinux).使用user_xattr挂载选项就可为用户存储以"user"开头的所有扩展属性.这样的限制在3.0内核中已经消失. 可

使用hexdump工具追踪EXT4文件系统中的一个文件

昨天追踪EXT4文件系统的过程中出了点问题,就是找不到文件,于是试了一下追踪FAT32文件系统的,成功之后有了点信心,今天继续嗑EXT4文件系统,终于找到啦,记录一下. 操作系统:linux(centos 6.5) 文件系统:EXT4 工具:hexdump,windows自带计算器 参考书目:<数据重现-文件系统原理精解与数据恢复最佳实践>(马林 著),题为<Ext4文件系统架构分析>的系列博客,不知道原作是谁了. EXT4文件系统架构: 补充说明:EXT4文件系统中只有0号块组的

Android架构分析之Android智能指针(二)

作者:刘昊昱 博客:http://blog.csdn.net/liuhaoyutz Android版本:4.4.2 在上一篇文章中,我们分析了Android智能指针中的强指针sp,本文我们来分析弱指针wp.为什么需要弱指针wp呢?我们来考虑下面一种场景:有两个类CParent和CChild,CParent类中有一个智能指针指向CChild对象,CChild类中有一个智能指针指向CParent对象 class CParent :public LightRefBase<CParent> { --

二、OpenStack入门 之 架构分析

OpenStack入门 之 架构分析 写在前面 学习目标: 了解 OpenStack 各组件的逻辑关系: 了解 OpenStack 的各组件的通信和部署关系: 了解 OpenStack 的工作流程: 接下来我会掌握: OpenStack 组件间的逻辑关系: OpenStack 的API: OpenStack 组件间的通信关系: OpenStack 中几种不同的存储: OpenStack 工作流程: OpenStack 的部署架构: OpenStack 各组件之间的关系有:逻辑关系,通信关系,部署

Android架构分析之Android消息处理机制(二)

作者:刘昊昱 博客:http://blog.csdn.net/liuhaoyutz Android版本:4.4.2 在上一篇文章中我们看了一个使用Handler处理Message消息的例子,本文我们来分析一下其背后隐藏的Android消息处理机制. 我们可能比较熟悉Windows操作系统的消息处理模型: while(GetMessage(&msg,NULL, 0, 0)) { TranslateMessage(&msg); DispatchMessage(&msg); } 1.消息

ECMALL模板解析机制.MVC架构分析及文件目录说明.二次开发指南手册(转)

ECMALL模板解析语法与机制 http://www.nowamagic.net/architecture/archt_TemplateSyntaxAndAnalysis.php ECMALL模块开发指南 http://wenku.baidu.com/view/785b8a1ea76e58fafab003a6.html ECMall 结构图 http://wenku.baidu.com/view/3e9d9921bcd126fff7050b10.html ECMall 数据库表结构 全面讲解 h

ext4文件系统的delalloc选项造成单次写延迟增加的分析

最近我们的服务进程遇到kill -15后处于Z的状态,变为了僵尸进程,经过/proc/{thread_id}/stack查看其上线程的栈,发现是卡在了fwrite的过程中,而我们的系统中所有文件系统挂载参数都使用了delalloc参数,怀疑是这个原因:ext4挂载的时候打开了delalloc选项,然后系统在没有分配磁盘块的情况下写写写,到page cache被回写到磁盘时,发现磁盘已经满了,没办法分配新的磁盘块了,就Hang住了. 这篇文章是淘宝内核组的刘峥同学在内部技术论坛上发表的一篇文章,但

Tomcat源码分析二:先看看Tomcat的整体架构

Tomcat源码分析二:先看看Tomcat的整体架构 Tomcat架构图 我们先来看一张比较经典的Tomcat架构图: 从这张图中,我们可以看出Tomcat中含有Server.Service.Connector.Container等组件,接下来我们一起去大致的看看这些组件的作用和他们之间的相互联系.在这之前,我们先补充一个知识点,也就是Tomcat它实现的功能点是什么呢?通过查找一些资料,这里参考下极客时间<深入拆解Tomcat_Jetty>中的总结,即Tomcat 要实现 2 个核心功能: