融合算法集锦

一、PCA:

PCA是一种用来对图像特征降维的方法,PCA通过将多个变量通过线性变换以选出较少的重要变量。它往往可以有效地从过于“丰富”的数据信息中获取最重要的元素和结构,去除数据的噪音和冗余,将原来复杂的数据降维,揭示隐藏在复杂数据背后的简单结构。近年来,PCA方法被广泛地运用于计算机领域,如数据降维、图像有损压缩、特征追踪等等。PCA方法是一个高普适用方法,它的一大优点是能够对数据进行降维处理,我们通过PCA方法求出数据集的主元,选取最重要的部分,将其余的维数省去,从而达到降维和简化模型的目的,间接地对数据进行了压缩处理,同时很大程度上保留了原数据的信息,就如同人脑在感知神经处理时进行了降维处理。所以在机器学习和模式识别及计算机视觉领域,PCA方法被广泛的运用。

在人脸识别中,假设训练集是30幅不同的N×N大小的人脸图像。把图像中每一个像素看成是一维信息,那么一副图像就是N2维的向量。因为人脸的结构有极大的相似性,如果是同一个人脸的话相似性更大。而我们的所希望能够通过人脸来表达人脸,而非用像素来表达人脸。那么我们就可以用PCA方法对30幅训练集图像进行处理,寻找这些图像中的相似维度。我们提取出最重要的主成份后,让被识别图像与原图进行过变化后的主元维度进行相似度比较,以衡量两幅图片的相似性。

在图像压缩方面,我们还可以通过PCA方法进行图像压缩,又称Hotelling或者Karhunen and
Leove变换。我们通过PCA提取出图像的主分量,去除掉一些次分量,然后变换回原图像空间,图像因为维数的降低得到了很大程度上的压缩,同时图像还很大程度上保留了原图像的重要信息。

算法实现:

1、获得图像的特征数据;

2、减去特征数据的均值:需要在每一个维度进行,即x = x-(x的均值),y = y - (y的均值);

3、计算协方差矩阵:

4、计算协方差矩阵的特征值和特征向量:有两种方法,一种是通过特征值分解来求,

5、将特征值从大到小排序,选择最大的前P个特征值对应的特征向量,组成一个特征向量。其中p可以选择特征总数的98%或者自己根据情况自己选择。

6、产生新的数据集:利用下式对原始数据进行转化,得到转化后的具有较低维度的数据。

PCA融合特点:

PCA是一种与类别无关的降维方法,所以PCA是一种unsupervised
learning。

二、LDA

LDA的全称是Linear Discriminant
Analysis(线性判别分析),是一种supervised
learning.
有些资料上也称为是Fisher’s Linear Discriminant,因为它被Ronald
Fisher发明自1936年,Discriminant这次词我个人的理解是,一个模型,不需要去通过概率的方法来训练、预测数据,比如说各种贝叶斯方法,就需要获取数据的先验、后验概率等等。LDA是在目前机器学习、数据挖掘领域经典且热门的一个算法,据我所知,百度的商务搜索部里面就用了不少这方面的算法。

LDA的原理是,将带上标签的数据(点),通过投影的方法,投影到维度更低的空间中,使得投影后的点,会形成按类别区分,一簇一簇的情况,相同类别的点,将会在投影后的空间中更接近。要说明白LDA,首先得弄明白线性分类器(Linear
Classifier
):因为LDA是一种线性分类器。对于K-分类的一个分类问题,会有K个线性函数:

当满足条件:对于所有的j,都有Yk >
Yj,的时候,我们就说x属于类别k。对于每一个分类,都有一个公式去算一个分值,在所有的公式得到的分值中,找一个最大的,就是所属的分类了。

上式实际上就是一种投影,是将一个高维的点投影到一条高维的直线上,LDA最求的目标是,给出一个标注了类别的数据集,投影到了一条直线之后,能够使得点尽量的按类别区分开。

融合算法集锦,布布扣,bubuko.com

时间: 2024-10-21 10:23:15

融合算法集锦的相关文章

[stm32] MPU6050 HMC5883 Kalman 融合算法移植

一.卡尔曼滤波九轴融合算法stm32尝试 1.Kalman滤波文件[.h已经封装为结构体] 1 /* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics-> All rights reserved-> 2 3 This software may be distributed and modified under the terms of the GNU 4 General Public License version 2 (GPL2) as

最短路径算法集锦

/* Name: 最短路径算法集锦 Copyright: Author: 巧若拙 Date: 12/11/14 15:32 Description: 列举了深度优先搜索的递归和非递归算法,Dijkstra最短路径算法, 基于Bellman-Fort最短路径算法的改进型广度优先搜索算法, Floyd-Warshall最短路径算法的原始版和变化版 本文是阅读<啊哈!算法>后的学习笔记,代码与教材中有些差异,若有错误请指正,谢谢! 测试数据: 5 7 0 3 2 0 4 9 4 2 1 4 1 3

图像融合算法(归纳篇)

综合关注几篇的papers的图像融合算法,对整个过程作归纳,与大家分享(^_^).基于sift特征的全景拼接方法的整个过程的大致流程: 对需拼接的图像进行预处理,主要是几何校正和消噪.对于几何校正,因为我们考虑的是视频的实时处理,那么我们只需考虑摄像机的所有运动形式,其中包含8个自由度,可用投影变换来表示.H=[m0 m1 m2;m3 m4 m5;m6 m7 1],考虑到它的算法复杂度已经有n的3次方,我们可以考虑通过控制摄像机的运动方式来减少复杂度,比如令摄像机只有平移旋转和缩放,即仿射变换,

图像融合算法(感应篇)

复按照几个papers图像融合算法,诱导整个过程,与您分享(^_^). 基于sift的全景拼接方法的整个过程的大致流程: 对需拼接的图像进行预处理.主要是几何校正和消噪.对于几何校正.因为我们考虑的是视频的实时处理,那么我们仅仅需考虑摄像机的全部运动形式,当中包括8个自由度.可用投影变换来表示.H=[m0 m1 m2;m3 m4 m5;m6 m7 1],考虑到它的算法复杂度已经有n的3次方.我们能够考虑通过控制摄像机的运动方式来减少复杂度,比方令摄像机仅仅有平移旋转和缩放,即仿射变换,减少了一次

stl_algorithm算法之融合算法

融合算法: 7.64.template <class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator merge (InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result) { while (true) { if (first1

Python有黄金屋,OpenCV有颜如玉,人脸融合算法开源,堪比整容!

python & opencv 打造当前相机最新的人脸融合功能. 论述 目前大部分IT大企业对人脸技术都是有研究的,人脸识别.人脸检测等等,到我们日常P图软件,随便说一个我知道的天天P图软件APP就可实现,Face++已经打造了人脸技术的API,但是它是收费的并且有点小贵,所以这次把人脸融合算法直接开源,供大家利用.(Python源码至于文末) 先来瞧瞧各大软件与我们利用Python_OpenCV实现的效果差距: 左边为被融合的图,右边为欲融合的图 手把手教你如何实现人脸融合技术: 零.融合函数

十大经典预测算法六---集成学习(模型融合算法)

模型融合算法概念 它不是具体的指某一个算法,而是一种把多个弱模型融合合并在一起变成一个强模型的思想 用模型融合算法的原因 1.单个模型容易过拟合,多个模型融合可以提高范化能力 2.单个模型预测能力不高,多个模型往往能提高预测能力 3.对于数据集过大或过小,可以分别进行划分和有放回的操作,产生不同的数据子集,然后通过数据子集训练不同的分类模型,最终合并成一个大的分类器 4.对于多个异构的特征集的时候,很难进行融合,可以考虑每个数据集构建一个分类模型,然后将多个模型融合 5.模型融合算法成功的关键在

多传感器数据融合算法综述

文章内容来源:https://blog.csdn.net/ZXQHBD/article/details/69389019 多传感器数据融合是一个新兴的研究领域,是针对一个系统使用多种传感器这一特定问题而展开的一种关于数据处理的研究.多传感器数据融合技术是近几年来发展起来的一门实践性较强的应用技术,是多学科交叉的新技术,涉及到信号处理.概率统计.信息论.模式识别.人工智能.模糊数学等理论. 近年来,多传感器数据融合技术无论在军事还是民事领域的应用都极为广泛.多传感器融合技术已成为军事.工业和高技术

【华为云技术分享】多模态融合算法——Multimodal Compact Bilinear Pooling

[摘要] 很多多模态任务,都需要融合两个模态的特征.特征融合即输入两个模态的特征向量,输出融合后的向量.最常用的方法是拼接(concatenation).按位乘(element-wise product).按位加(element-wise sum).MCB的作者认为这些简单的操作效果不如外积(outer product),不足以建模两个模态间的复杂关系.但外积计算存在复杂度过高的问题. Multimodal Compact Bilinear Pooling (MCB)来自EMNLP 2016的论