机器学习 1 regression

机器学习 1 regression

Linear regerssion 线性回归

回归:

stock market forecast

f(过去10年股票起伏的资料) = 明天道琼指数点数

self driving car

f(获取的道路图像)= 方向盘角度

recommendation

f(使用者A 商品B)= 购买商品可能性

预测妙蛙种子 cp值 combat power

f( xs ) =cp after evolution

xs

xhp

xw

xh

找model

定义 function set

step 1: model

y = b+ w* xcp  进化前的CP值

f1 : y= 10.0+9*xcp

f2: y= 9.8+9.2*xcp

f3: y= -0.8-1.2*xcp

infinite 有很多

linear model : y=b+sum(wi*xi)

xi feature wi weight b bais

step2: goodness of function

x1 ,   y^1

x2 ,   y^2

...

x10 ,   y^10

x 进化前的CP值

y 进化后的CP值

xncp  

损失函数

L(f)=L(w,b)

使用某个function 的wb 用来计算L

step: best function

gradient descent

L(w) w

w*= arg minwL(w)

穷举W所有值 ,看计算那个值? 效率低

可以: 1) 随机选取初始点 W0

2) 计算 dL/dw| w=w0

也就是切线的斜率      negative -》 increase w

positive -> decrease w

往左边走一步 还是右边走,LOSS会减少?

stepsize: 却觉于

1)现在的微分值越大,也就是越陡峭,

2)还有就是常数项 learning rate

w1 <- w0- n* dl/dw|w=w0

w2 <- w1-n*dl/dw|w=w1

local optimal 会找到局部最小值,而不是global optimal

如果是两个参数? w*,b* = arg min w,b L(w,b)

与上面的过程一致

有两个参数 w,b 决定了function

in linear regression ,the loss function L ins convex

NO local optimal

how‘s the results?

Generalization 泛化性能

selecting another model

y= b+w1*xcp+w2*(xcp)2

有没有可能更复杂的model,

how about more complex model?

在train data上效果是模型越复杂,效果很好,这是因为

越复杂的模型是包括简单的模型

A more complex model yields lower error on training data

但是在test data上效果不一定是。这就是overfitting

只考虑进化前的cp值可能还不够,同时需要考虑物种

预测重新设计function Set

if xs=pidgey y=b1+w1*xcp

也是线性模型,不同种类的物种,它的model不一样

考虑其他的影响因素 用更加复杂的模型

已经过拟合了

regularization 正则项 ,去解决过拟合,

当W很小,接近0,当输入有变化,output对输入变化不敏感。

输出对输入就不敏感,function 就平滑。如果一个平滑的function

收到噪声影响小。

调整b 和function平滑没关系,只是和位置有关系

lamad 越大,考虑训练误差越小

我们希望function平滑,但不能太平滑,调整lamad

时间: 2024-10-07 05:29:52

机器学习 1 regression的相关文章

coursera 机器学习 logistic regression 逻辑回归的项目

github : https://github.com/twomeng/logistic-regression- ex1. m 1 %% Machine Learning Online Class - Exercise 2: Logistic Regression 2 % 3 % Instructions 4 % ------------ 5 % 6 % This file contains code that helps you get started on the logistic 7 %

Andrew Ng机器学习-Linear Regression with one variable

这一讲主要是针对单变量的线性回归来讲两个基本概念:损失函数(cost function).梯度下降(Gradient Descent) 1 Cost Function 定义如下: 左图为cost function的定义.右边为只有一个参数的h(x)的情况. cost function的作用的评价一个回归函数好坏用的,具体来说就是评价回归函数h(x)的参数选对没. 这里J(theta)也可以称作squared error function.这里把J(theta)定义为平方误差的形式主要是为了后面求

机器学习——logistic regression

[一.逻辑回归模型] 逻辑回归不同于线性回归,它实际上一种分类方法,用于二分类问题(y=0或者1).逻辑回归模型如下: 即当>=0.5时,预测输出值y=1:否则预测输出值y=0:且有: [二.决策边界] 所谓Decision Boundary就是能够将所有数据点进行很好地分类的h(x)边界. [例1] 由图可知: 对应的线性回归模型为: 决策边界为粉色直线: [例2] 由图可知: 对应的线性回归模型为: 决策边界为粉色曲线: [三.代价函数] 代价函数 J(θ)的推导如下: 对于每个样本: 于是

机器学习-Logistic Regression速记(来自李宏毅视频)

图片来自:  https://youtu.be/hSXFuypLukA 原文地址:https://www.cnblogs.com/lixiaov/p/10348926.html

流行的机器学习算法概述

本文我们会概述一些流行的机器学习算法. 机器学习算法很多,并且它们自身又有很多延伸.因此,如何确定解决一个问题的最好算法是很困难的. 下面我们先说基于学习方式对算法的分类和算法之间的相似性,让大家有个整体意识:接着再陈述各类算法. 一.基于学习方式对算法的分类 根据如何处理经验.环境或者任何我们称之为输入的数据,算法分为不同种类.机器学习和人工智能课本通常先考虑算法可以适应的学习方式. 这里只讨论几个主要的学习风格或学习模型,并且有几个基本的例子.这种分类或者组织的方法很好,因为它迫使你去思考输

Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression &amp; Regularization

原文地址:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machin

机器学习:概念与理解(二):回归、稀疏与正则约束 ridge regression,Lasso

"机器学习:概念与理解"系列,我本着开放与共享(open and share)的精神撰写,目的是让更多的人了解机器学习的概念,理解其原理,学会应用.现在网上各种技术类文章很多,不乏大牛的精辟见解,但也有很多滥竽充数.误导读者的.这个系列对教课书籍和网络资源进行汇总.理解与整理,力求一击中的,通俗易懂.机器学习很难,是因为她有很扎实的理论基础,复杂的公式推导:机器学习也很简单,是因为对她不甚了解的人也可以轻易使用.我希望好好地梳理一些基础方法模型,输出一些真正有长期参考价值的内容,让更多

机器学习之多变量线性回归(Linear Regression with multiple variables)

1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量(变量)--房屋面积x.我们希望使用这个特征量来预测房子的价格.我们的假设在下图中用蓝线划出: 不妨思考一下,如果我们不仅仅知道房屋面积(作为预测房屋价格的特征量(变量)),我们还知道卧室的数量.楼层的数量以及房屋的使用年限,那么这就给了我们更多可以用来预测房屋价格的信息. 即,支持多变量的假设为:

【机器学习】Logistic Regression 的前世今生(理论篇)

Logistic Regression 的前世今生(理论篇) 本博客仅为作者记录笔记之用,不免有非常多细节不正确之处. 还望各位看官能够见谅,欢迎批评指正. 博客虽水,然亦博主之苦劳也. 如需转载,请附上本文链接,不甚感激! http://blog.csdn.net/cyh_24/article/details/50359055 写这篇博客的动力是源于看到了以下这篇微博: 我在看到这篇微博的时候大为触动,由于,如果是rickjin来面试我.我想我会死的非常慘,由于他问的问题我基本都回答不上来.