bzoj千题计划173:bzoj1257: [CQOI2007]余数之和sum

http://www.lydsy.com/JudgeOnline/problem.php?id=1257

k%i=k-int(k/i)*i

除法分块,对于相同的k/i用等差序列求和来做

#include<cstdio>
#include<iostream>

using namespace std;

int main()
{
    int n,k;
    scanf("%d%d",&n,&k);
    long long ans=0;
    if(n>k)
    {
        ans=1ll*(n-k)*k;
        n=k;
    }
    int l,r;
    int t;
    for(l=1;l<=n;l=r+1)
    {
        t=k/l; r=k/t;
        if(r>n) r=n;
        ans+=1ll*k*(r-l+1)-1ll*(r-l+1)*(l+r)/2*t;
    }
    cout<<ans;
}

1257: [CQOI2007]余数之和sum

Time Limit: 5 Sec  Memory Limit: 162 MB
Submit: 5126  Solved: 2377
[Submit][Status][Discuss]

Description

给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7

Input

输入仅一行,包含两个整数n, k。

Output

输出仅一行,即j(n, k)。

Sample Input

5 3

Sample Output

7

HINT

50%的数据满足:1<=n, k<=1000 100%的数据满足:1<=n ,k<=10^9

原文地址:https://www.cnblogs.com/TheRoadToTheGold/p/8157143.html

时间: 2024-10-08 01:45:52

bzoj千题计划173:bzoj1257: [CQOI2007]余数之和sum的相关文章

[bzoj1257][CQOI2007]余数之和sum

给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值   n,k<=10^9 我们枚举商,只有n^0.5种,然后用发现这时候的余数是一个等差数列,就可以计算啦. #include<iostream> #include<cstdio> #define ll long long using namespace std; int read() { int x=0,f=1;char ch=getchar(); w

bzoj1257: [CQOI2007]余数之和sum(数论)

非常经典的题目... 要求 则有 实际上 最多只有2*sqrt(k)种取值,非常好证明 因为>=sqrt(k)的数除k下取整得到的数一定<=sqrt(k),而k除以<=sqrt(k)以下的数也会得到sqrt(k)个>=sqrt(k)的数,于是k除以i下取整最多只有2*sqrt(k)种取值 于是我们枚举i,找到每一段k除以i下取整的数相同的左端点(k/(k/i+1)+1)和右端点(k/(k/i))计算答案即可,时间复杂度O(sqrt(k)) #include<iostream&

BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】

1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 4474  Solved: 2083[Submit][Status][Discuss] Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3

bzoj 1257: [CQOI2007]余数之和sum 数学 &amp;&amp; 枚举

1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Status] Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3

BZOJ 1257: [CQOI2007]余数之和sum( 数论 )

n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连续的数对答案的贡献成等差数列, 可以O(1)求出..然后就分⌊k / i⌋ 相等的一块一块来就行了. 分出来大概是sqrt(k)块.这个sqrt(k)我并不会证Orz...写了个程序验证了一下, 分出来的块数和2 * sqrt(k)非常接近. 所以时间复杂度为O(sqrt(k)) --------------

1257: [CQOI2007]余数之和sum

1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 2001  Solved: 928[Submit][Status] Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3

bzoj千题计划185:bzoj1260: [CQOI2007]涂色paint

http://www.lydsy.com/JudgeOnline/problem.php?id=1260 区间DP模型 dp[l][r] 表示涂完区间[l,r]所需的最少次数 从小到大们枚举区间[l,r] 如果col[l]==col[r] dp[l][r]=min(dp[l+1][r],dp[l][r-1],dp[l+1][r-1]+1) 否则 dp[l][r]=min(dp[l][k]+dp[k+1][r]) 我还是辣鸡啊~~~~(>_<)~~~~,这种题都不能秒 #include<c

bzoj千题计划125:bzoj1037: [ZJOI2008]生日聚会Party

http://www.lydsy.com/JudgeOnline/problem.php?id=1037 一个区间是否满足 任意连续的一段,男孩与女孩的数目之差不超过k, 取决于男孩与女孩数目之差的最大值是否满足条件 而且若在一个位置 上坐一个男孩, 所有包含这个位置的区间 男孩与女孩数目之差+1,与女孩与男孩数目之差-1 所以我们只需要知道 最大的数目 之差即可 dp[i][j][k][l] 表示前i个位置,坐了j个男孩,男孩与女孩数目之差=k,女孩与男孩数目之差=l 的方案数 k<0 怎么办

bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列

http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, 所以放在i+1后面的所有数都会与i+1形成逆序对 转移方程:dp[i][j]=Σ dp[i-1][j-k]  k∈[0,min(j,i-1)] 前缀和优化 朴素的DP #include<cstdio> #include<algorithm> using namespace std;