Harris Corner(Harris角检测)

在做图像匹配时,常需要对两幅图像中的特征点进行匹配。为了保证匹配的准确性,所选择的特征必须有其独特性,角点可以作为一种不错的特征。

那么为什么角点有其独特性呢?角点往往是两条边缘的交点,它是两条边缘方向变换的一种表示,因此其两个方向的梯度变换通常都比较大并且容易检测到。

这里我们理解一下Harris Corner 一种角点检测的算法

角点检测基本原理:

人们通常通过在一个小的窗口区域内观察点的灰度值大小来识别角点,如果往任何方向移动窗口都会引起比较大的灰度变换那么往往这就是我们要找的角点。如下图右

下面我们看一下Harris的数学公式,对于[x,y]平移[u,v]个单位后强度的变换有下式,I(x+u,y+v)是平移后的强度,I(x,y)是原图像像素。对于括号里面的值,如果是强度恒定的区域,那么它就接近于零,反之如果强度变化剧烈那么其值将非常大,所以我们期望E(u,v)很大。

其中w是窗函数,它可以是加权函数,也可以是高斯函数

利用二维泰勒展开式我们有

所以其中一阶可以近似为

于是我们可以给出Harris Corner的如下推导,其中Ix,Iy是x,y方向的Gradient模,乘以位移得到位移后的量

对于小的位移,我们可以用双线性插值方法近似:

其中M为2*2矩阵如下

在本质上我们可以把二次项看成一个椭圆函数,我们对M进行特征值分析有λ1,λ2

根据λ1,λ2的值我们可以把其分为三类:

1.λ1,λ2都很小且近似,E在所以方向接近于常数;

2.λ1>>λ2,或者λ2>>λ1, E将在某一方向上很大;

3.λ1,λ2都很大且近似,E将在所以方向上很大;

如图所示:

最后我们通过计算角点响应值R来判断其属于哪个区间

其中k一般为常数取在0.04-0.06间。

算法步骤:

1.计算图像x,y方向的梯度Ix,Iy

2.计算每个像素点的梯度平方

3.计算梯度在每个像素点的和

4.定义在每个像素点的矩阵H,也就是前面的M

5.计算每个像素的角点响应

6.设置阈值找出可能点并进行非极大值抑制

代码:

close all
clear all

I = imread(‘empire.jpg‘);
I = rgb2gray(I);
I = imresize(I,[500,300]);
imshow(I);

sigma = 1;
halfwid = sigma * 3;

[xx, yy] = meshgrid(-halfwid:halfwid, -halfwid:halfwid);

Gxy = exp(-(xx .^ 2 + yy .^ 2) / (2 * sigma ^ 2));
Gx = xx .* exp(-(xx .^ 2 + yy .^ 2) / (2 * sigma ^ 2));
Gy = yy .* exp(-(xx .^ 2 + yy .^ 2) / (2 * sigma ^ 2));

%%apply sobel in herizontal direction and vertical direction compute the
%%gradient
%fx = [-1 0 1;-1 0 1;-1 0 1];
%fy = [1 1 1;0 0 0;-1 -1 -1];
Ix = conv2(I,Gx,‘same‘);
Iy = conv2(I,Gy,‘same‘);
%%compute Ix2, Iy2,Ixy
Ix2 = Ix.*Ix;
Iy2 = Iy.*Iy;
Ixy = Ix.*Iy;

%%apply gaussian filter
h = fspecial(‘gaussian‘,[6,6],1);
Ix2 = conv2(Ix2,h,‘same‘);
Iy2 = conv2(Iy2,h,‘same‘);
Ixy = conv2(Ixy,h,‘same‘);
height = size(I,1);
width = size(I,2);
result = zeros(height,width);
R = zeros(height,width);
Rmax = 0;
%% compute M matrix and corner response
for i = 1:height
    for j =1:width
        M = [Ix2(i,j) Ixy(i,j);Ixy(i,j) Iy(i,j)];
        R(i,j) = det(M) - 0.04*(trace(M)^2);
        if R(i,j)> Rmax
            Rmax = R(i,j);
        end
    end
end
%% compare whith threshold
count = 0;
for i = 2:height-1
    for j = 2:width-1
        if R(i,j) > 0.01*Rmax
            result(i,j) = 1;
            count = count +1;
        end
    end
end

%non-maxima suppression
result = imdilate(result, [1 1 1; 1 0 1; 1 1 1]);

[posc,posr] = find(result == 1);
imshow(I);
hold on;
plot(posr,posc,‘r.‘);

本文原创,转载请注明出处

时间: 2024-11-07 02:17:34

Harris Corner(Harris角检测)的相关文章

OpenCV Feature Detection and Description -- Harris Corner Detection Harris角点检测

原文链接 https://docs.opencv.org/4.1.2/dc/d0d/tutorial_py_features_harris.html 阅读文档学习opencv 如有问题,大家指出-- Goal In this chapter, We will understand the concepts behind Harris Corner Detection. We will see the functions: cv.cornerHarris(), cv.cornerSubPix()

【OpenCV十六新手教程】OpenCV角检测Harris角点检测

本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/29356187 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: [email protected] 写作当前博文时配套使用的OpenCV版本号: 2.4.9 本篇文章中,我们一起探讨了OpenCV

OpenCV使用Harris算法实现角点检测

纯粹阅读,请移步OpenCV使用Harris算法实现角点检测 效果图 源码 KqwOpenCVFeaturesDemo 角点是两条边缘的交点或者在局部邻域中有多个显著边缘方向的点.Harris角点检测是一种在角点检测中最常见的技术. Harris角点检测器在图像上使用滑动窗口计算亮度的变化. 封装 这里用到了RxJava.主要是因为图片处理是耗时操作,会阻塞线程,为了防止界面卡顿,这里使用RxJava进行了线程切换. /** * Harris角点检测 * * @param bitmap 要检测的

Harris Corner

Harris Corner网上已经有很多的资料了,但它也是我读研究生后读的第一篇论文,对我有一种特别的意义. 这篇文章我想从几个方面来讲解Harris Corner,一是Harris Corner的思想,二是Harris Corner重要公式的推导,三是从图像的层面直观的观察每一个公式的结果.本人能力有限,如有纰漏,万望指正.Any advice and suggestions will be greatly appreciated. 我们的目的是在图像上找到角点.那我们在图像上设置一个小窗,然

OpenCV角点检测源代码分析(Harris和ShiTomasi角点)

OpenCV中常用的角点检测为Harris角点和ShiTomasi角点. 以OpenCV源代码文件 .\opencv\sources\samples\cpp\tutorial_code\TrackingMotion\cornerDetector_Demo.cpp为例,主要分析其中的这两种角点检测源代码.角点检测数学原理请参考我之前转载的一篇博客 http://www.cnblogs.com/riddick/p/7645904.html,分析的很详细,不再赘述.本文主要分析其源代码: 1. Har

OpenCV Tutorials —— Harris corner detector

Harris 角点检测 ~~   Why is a corner so special Because, since it is the intersection of two edges, it represents a point in which the directions of these two edges change.  角点是两条边界的交点,体现了两个梯度方向上的变化 Hence, the gradient of the image (in both directions) h

目标检测之harr---点角检测harr

Haar特征与积分图 1. Adaboost方法的引入 1.1 Boosting方法的提出和发展 在了解Adaboost方法之前,先了解一下Boosting方法. 回答一个是与否的问题,随机猜测可以获得50%的正确率.如果一种方法能获得比随机猜测稍微高一点的正确率,则就可以称该得到这个方法的过程为弱学习:如果一个方法可以显著提高猜测的正确率,则称获取该方法的过程为强学习.1994年,Kearns和Valiant证明,在Valiant的PAC(Probably ApproximatelyCorre

Harris角点检测学习

1.角点的定义与性质 角点是一种局部特征,具有旋转不变性和不随光照条件变化而变化的特点,一般将图像中曲率足够高或者曲率变化明显的点作为角点.检测得到的角点特征通常用于图像匹配.目标跟踪.运动估计等方面. 2.Harris角点 1)定性描述 该算法中,将图像分为平坦区域.边缘.角点三部分.平坦区域中像素灰度在各个方向上变换都很小,边缘上的像素灰度在某个方向变化很大,但是在另一些方向变化很小:位于角点上的像素灰度则在各个方向上的变化都比较大.这是通过人眼观察得到的直观感受. 2)量化的数学表达 不同

openCV2马拉松第19圈——Harris角点检测(自己实现)

计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/26824529 收入囊中 使用OpenCV的connerHarris实现角点检测 自己实现Harris算法 下面是自己实现的一个效果图 因为阀值设置比较高,所以房屋周围没有找出来 葵花宝典 在此之前,我们讲过边缘的检测,边缘检测的基本原理就是x方向或者y方向梯度变化很大,角点,顾名思义,就是两个方向的梯度变化都很大. 左1,平滑区域,没有边缘和角点