ACM学习历程——UVA127 "Accordian" Patience(栈, 链表)

Description

 ``Accordian‘‘ Patience 

You are to simulate the playing of games of ``Accordian‘‘ patience, the rules for which are as follows:

Deal cards one by one in a row from left to right, not overlapping. Whenever the card matches its immediate neighbour on the left, or matches the third card to the left, it may be moved onto that card. Cards match if they are of the same suit or same rank. After making a move, look to see if it has made additional moves possible. Only the top card of each pile may be moved at any given time. Gaps between piles should be closed up as soon as they appear by moving all piles on the right of the gap one position to the left. Deal out the whole pack, combining cards towards the left whenever possible. The game is won if the pack is reduced to a single pile.

Situations can arise where more than one play is possible. Where two cards may be moved, you should adopt the strategy of always moving the leftmost card possible. Where a card may be moved either one position to the left or three positions to the left, move it three positions.

Input

Input data to the program specifies the order in which cards are dealt from the pack. The input contains pairs of lines, each line containing 26 cards separated by single space characters. The final line of the input file contains a # as its first character. Cards are represented as a two character code. The first character is the face-value (A=Ace, 2-9, T=10, J=Jack, Q=Queen, K=King) and the second character is the suit (C=Clubs, D=Diamonds, H=Hearts, S=Spades).

Output

One line of output must be produced for each pair of lines (that between them describe a pack of 52 cards) in the input. Each line of output shows the number of cards in each of the piles remaining after playing ``Accordian patience‘‘ with the pack of cards as described by the corresponding pairs of input lines.

Sample Input

QD AD 8H 5S 3H 5H TC 4D JH KS 6H 8S JS AC AS 8D 2H QS TS 3S AH 4H TH TD 3C 6S
8C 7D 4C 4S 7S 9H 7C 5D 2S KD 2D QH JD 6D 9D JC 2C KH 3D QC 6C 9S KC 7H 9C 5C
AC 2C 3C 4C 5C 6C 7C 8C 9C TC JC QC KC AD 2D 3D 4D 5D 6D 7D 8D TD 9D JD QD KD
AH 2H 3H 4H 5H 6H 7H 8H 9H KH 6S QH TH AS 2S 3S 4S 5S JH 7S 8S 9S TS JS QS KS
#

Sample Output

6 piles remaining: 40 8 1 1 1 1
1 pile remaining: 52

根据题目意思,两种操作,固然可以看出每个牌堆需要靠栈来实现,故结构体来存放,内部有一个数组成员,可以开52。然而,对于牌堆来说,似乎要支持访问后一个和前一个牌堆两种操作,故可以使用顺序表,然后访问时忽略0牌堆。也可以使用双向链表。下面贴两种方式的代码:

双向链表:用时432MS:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <string>
#define inf 0x3fffffff
#define eps 1e-10

using namespace std;

struct node
{
    char Stack[52][2];
    int top;
    node *pre;
    node *next;
};

node *head;
int num;

void Del(node *p)
{
    node *t;
    t = p->pre;
    t->next = p->next;
    if (p->next != NULL)
        p->next->pre = t;
    free(p);
}

bool Input()
{
    num = 0;
    head = (node *)malloc(sizeof(node));
    node *p = head, *t;
    char ch;
    ch = getchar();
    if (ch == ‘#‘)
        return 0;
    p->Stack[0][0] = ch;
    ch = getchar();
    p->Stack[0][1] = ch;
    p->top = 1;
    p->pre = NULL;
    p->next = NULL;
    num++;
    getchar();
    for (int i = 0; i < 51; ++i)
    {
        p->next = (node *)malloc(sizeof(node));
        t = p;
        p = p->next;
        ch = getchar();
        p->Stack[0][0] = ch;
        ch = getchar();
        p->Stack[0][1] = ch;
        p->top = 1;
        p->next = NULL;
        p->pre = t;
        num++;
        getchar();
    }
    return 1;
}

void Output()
{
    if (num == 1)
    {
        printf("1 pile remaining: %d\n", head->top);
        return;
    }
    printf("%d piles remaining:", num);
    node *p = head;
    for (;;)
    {
        printf(" %d", p->top);
        if (p->next == NULL)
            break;
        p = p->next;
    }
    printf("\n");
}

bool Do()
{
    node *p, *t;
    p = head;
    for (;;)
    {
        t = p;
        for (int i = 0; t != NULL && i < 3; ++i)
            t = t->pre;
        if (t != NULL &&
            (t->Stack[t->top-1][0] == p->Stack[p->top-1][0] ||
             t->Stack[t->top-1][1] == p->Stack[p->top-1][1]))
        {
            t->Stack[t->top][0] = p->Stack[p->top-1][0];
            t->Stack[t->top][1] = p->Stack[p->top-1][1];
            t->top++;
            p->top--;
            if (p->top == 0)
            {
                Del(p);
                num--;
            }
            return 1;
        }
        t = p->pre;
        if (t != NULL &&
            (t->Stack[t->top-1][0] == p->Stack[p->top-1][0] ||
             t->Stack[t->top-1][1] == p->Stack[p->top-1][1]))
        {
            t->Stack[t->top][0] = p->Stack[p->top-1][0];
            t->Stack[t->top][1] = p->Stack[p->top-1][1];
            t->top++;
            p->top--;
            if (p->top == 0)
            {
                Del(p);
                num--;
            }
            return 1;
        }
        if (p->next == NULL)
            break;
        p = p->next;
    }
    return 0;
}

int main()
{
    //freopen("test.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
    while (Input())
    {
        while (Do());
        Output();
    }
    return 0;
}

顺序表:

用时:879MS

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <string>
#define inf 0x3fffffff
#define esp 1e-10
#define N 100005

using namespace std;

struct node
{
    int top;
    char card[53][3];
}s[52];

bool Input()
{
    scanf ("%s", s[0].card[0]);
    if (s[0].card[0][0] == ‘#‘)
        return 0;
    s[0].top = 1;
    for (int i = 1; i < 52; ++i)
    {
        s[i].top = 1;
        scanf ("%s", s[i].card[0]);
    }
    return 1;
}

void Output()
{
    queue <int> q;
    for (int i = 0; i < 52; ++i)
        if (s[i].top != 0)
            q.push(i);
    int sum = q.size();
    if (sum == 1)
        printf ("1 pile remaining: %d\n", s[q.front()].top);
    else
    {
        printf ("%d piles remaining:", sum);
        int k;
        while (!q.empty())
        {
            k = q.front();
            q.pop();
            printf (" %d", s[k].top);
        }
        printf ("\n");
    }
}

void qt()
{
    int p = 0;
    for (;;)
    {
        if (p == 52)
            break;
        if (s[p].top != 0)
        {
            int one = -1, two = -1;
            int flag = 0, j = p-1;
            for (;;)
            {
                if (j < 0)
                    break;
                if (s[j].top != 0)
                {
                    flag++;
                    if (flag == 3)
                    {
                        one = j;
                        break;
                    }
                    if (flag == 1)
                        two = j;
                }
                j--;
            }
            if (one != -1)
            {
                if (s[p].card[s[p].top-1][0] == s[one].card[s[one].top-1][0] ||
                    s[p].card[s[p].top-1][1] == s[one].card[s[one].top-1][1])
                {
                    strcpy (s[one].card[s[one].top], s[p].card[s[p].top-1]);
                    s[p].top--;
                    s[one].top++;
                    p = 0;
                    continue;
                }
            }
            if (two != -1)
            {
                if (s[p].card[s[p].top-1][0] == s[two].card[s[two].top-1][0] ||
                    s[p].card[s[p].top-1][1] == s[two].card[s[two].top-1][1])
                {
                    strcpy (s[two].card[s[two].top], s[p].card[s[p].top-1]);
                    s[p].top--;
                    s[two].top++;
                    p = 0;
                    continue;
                }
            }
        }
        ++p;
    }
}

int main()
{
    //freopen ("test.txt", "r", stdin);
    while (Input())
    {
        qt();
        Output();
    }
    return 0;
}
				
时间: 2024-09-29 15:45:41

ACM学习历程——UVA127 "Accordian" Patience(栈, 链表)的相关文章

ACM学习历程—HDU 4726 Kia&#39;s Calculation( 贪心&amp;&amp;计数排序)

DescriptionDoctor Ghee is teaching Kia how to calculate the sum of two integers. But Kia is so careless and alway forget to carry a number when the sum of two digits exceeds 9. For example, when she calculates 4567+5789, she will get 9246, and for 12

ACM学习历程—HDU 5023 A Corrupt Mayor&#39;s Performance Art(广州赛区网赛)(线段树)

Problem Description Corrupt governors always find ways to get dirty money. Paint something, then sell the worthless painting at a high price to someone who wants to bribe him/her on an auction, this seemed a safe way for mayor X to make money. Becaus

ACM学习历程—UESTC 1226 Huatuo&#39;s Medicine(数学)(2015CCPC L)

题目链接:http://acm.uestc.edu.cn/#/problem/show/1226 题目就是构造一个对称的串,除了中间的那个只有1个,其余的两边都是对称的两个,自然答案就是2*n-1. 代码: #include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <cstring> #include <algorithm> #

UVa127,&quot;Accordian&quot; Patience

注意1堆的时候,pile后面没有s!!!!因为这个WA了一次,否则就1A了 犯了一个很幼稚很幼稚的错误,申请ans[]后玩了吧ans置0,结果调了好长好长时间,本来是敲完就能过的T T啊啊啊啊啊啊,一个多小时没了啊 附上我调试时写的代码(把每一次运转都输出了= =一个一个看的,真心用了好长时间,头都大了) #include <iostream> #include <cstdio> #include <string> #include <cstring> #i

ACM学习历程——UVA 127 &quot;Accordian&quot; Patience(栈;模拟)

Description  ``Accordian'' Patience  You are to simulate the playing of games of ``Accordian'' patience, the rules for which are as follows: Deal cards one by one in a row from left to right, not overlapping. Whenever the card matches its immediate n

ACM学习历程——UVA11111 Generalized Matrioshkas(栈)

Description Problem B - Generalized Matrioshkas   Problem B - Generalized Matrioshkas  Vladimir worked for years making matrioshkas, those nesting dolls that certainly represent truly Russian craft. A matrioshka is a doll that may be opened in two ha

ACM学习历程——UVA442 Matrix Chain Multiplication(栈)

Description Matrix Chain Multiplication  Matrix Chain Multiplication  Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are perfo

ACM学习历程——ZOJ 3829 Known Notation (2014牡丹江区域赛K题)(策略,栈)

Description Do you know reverse Polish notation (RPN)? It is a known notation in the area of mathematics and computer science. It is also known as postfix notation since every operator in an expression follows all of its operands. Bob is a student in

ACM学习历程—BestCoder Round #75

1001:King's Cake(数论) http://acm.hdu.edu.cn/showproblem.php?pid=5640 这题有点辗转相除的意思.基本没有什么坑点. 代码: #include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <cstring> #include <algorithm> #include &l