Given a complete binary tree, count the number of nodes.
Definition of a complete binary tree from Wikipedia:
In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.
解法一:递归超时
代码如下:
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public int countNodes(TreeNode root) { if(root==null)return 0; int num1=0,num2=0; num1=count(root.left); num2=count(root.right); return 1+num1+num2; } int count(TreeNode root){ if(root==null) return 0; int num1=0,num2=0; if(root.left==null && root.right==null) return 1; if(root.left!=null) num1=count(root.left); if(root.right!=null) num2=count(root.right); return 1+num1+num2; } }
运行结果:
解法二:层次遍历,队列,超时
代码如下:
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public int countNodes(TreeNode root) { if(root==null)return 0; Queue<TreeNode> q=new LinkedList<>(); q.offer(root); int num=1; TreeNode tmp=null; while(!q.isEmpty()){ tmp=q.poll(); if(tmp.left!=null){ q.offer(tmp.left); num++; } if(tmp.right!=null){ q.offer(tmp.right); num++; } } return num; } }
解法三:待续
时间: 2024-10-10 23:51:51