HDU 2767--Proving Equivalences【scc缩点构图 && 求向图中最少增加多少条边才可以使新图强连通】

Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 4129    Accepted Submission(s): 1466

Problem Description

Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.

2. Ax = b has exactly one solution for every n × 1 matrix b.

3. Ax = b is consistent for every n × 1 matrix b.

4. Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the
four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a
lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

Input

On the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.

* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

Output

Per testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

Sample Input

2
4 0
3 2
1 2
1 3

Sample Output

4
2

题意:有n个命题,现已给出m次推导即由a可以推出b(根据该条件b不能推出a),问最少还需要多少次推导才可以证明n个命题之间是等价的。(等价命题:a <=> b 即 a可以推出b 且 b可以推出a。)

把每个命题虚拟成一个节点,a推导b当作一条a到b的有向边,问题就变成:在有向图中最少增加多少条边才可以使新图强连通。

思路:

将【每个强连通分支】缩成一个点,记录每个【缩点】的出度, 入度,并构造新图,然后求出所有入度为0的点数numin,求出所有出度为0的点数numuot,取最大值即可

#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
#define maxn 20000 + 1000
#define maxm 50000 + 5000
using namespace std;
int n, m;
vector<int>edge[maxm];
int low[maxn], dfn[maxn];
int dfs_clock;
int Stack[maxn];
bool Instack[maxn];
int top;
int Belong[maxn] , scc_clock;
int out[maxn], in[maxn];

void init(){
    for(int i = 1; i <= n; ++i)
        edge[i].clear();
}

void getmap(){
    scanf("%d%d", &n, &m);
    while(m--){
        int a, b;
        scanf("%d%d", &a, &b);
        edge[a].push_back(b);
    }
}

void tarjan(int u, int per){
    int v;
    low[u] = dfn[u] = ++dfs_clock;
    Stack[top++] = u;
    Instack[u] = true;
    for(int i = 0; i < edge[u].size(); i++){
        v = edge[u][i];
        if(!dfn[v]){
            tarjan(v, u);
            low[u] = min(low[v], low[u]);
        }
        else if(Instack[v]){
            low[u] = min(low[u], dfn[v]);
        }
    }
    if(dfn[u] == low[u]){
        scc_clock++;
        do{
            v = Stack[--top];
            Instack[v] = false;
            Belong[v] = scc_clock;
        }while(u != v);
    }
}

void find(){
    memset(low, 0, sizeof(low));
    memset(dfn, 0, sizeof(dfn));
    memset(Instack, false, sizeof(Instack));
    memset(Belong, 0, sizeof(Belong));
    dfs_clock = scc_clock = top = 0;
    for(int i = 1; i <= n; ++i){
        if(!dfn[i])
            tarjan(i, i);
    }
}

void suodian(){
    for(int i = 1; i <= scc_clock; ++i){
        in[i] = 0;
        out[i] = 0;
    }
    for(int i = 1; i <= n; ++i){
        for(int j = 0; j < edge[i].size(); ++j){
            int u = Belong[i];
            int v = Belong[edge[i][j]];
            if(u != v){
                out[u]++, in[v]++;
            }
        }
    }
}

void solve(){
    if(scc_clock == 1){
        printf("0\n");
        return ;
    }
    int numin = 0, numout = 0;
    for(int i = 1; i <= scc_clock; ++i){
        if(in[i] == 0) numin++;
        if(out[i] == 0) numout++;
    }
    //printf("%d\n",scc_clock);
    printf("%d\n", max(numin, numout));
}

int main (){
    int T;
    scanf("%d", &T);
	while(T--){
        init();
        getmap();
        find();
        suodian();
        solve();
	}
	return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-31 18:06:20

HDU 2767--Proving Equivalences【scc缩点构图 && 求向图中最少增加多少条边才可以使新图强连通】的相关文章

hdu 2767 Proving Equivalences 强连通缩点

给出n个命题,m个推导,问最少增加多少条推导,可以使所有命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每个点都至少要有一条出去的边和一条进来的边(这样才能保证它能到任意点和任意点都能到它) 所以求出新图中入度为0的个数,和出度为0的个数,添加的边就是从出度为0的指向入度为0的.这样还会有一点剩余,剩余的就乱连就行了. 所以只要求出2者的最大值就OK. #include <iostream> #include<cstring>

HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)

HDU 2767 Proving Equivalences(强连通 Tarjan+缩点) ACM 题目地址:HDU 2767 题意: 给定一张有向图,问最少添加几条边使得有向图成为一个强连通图. 分析: Tarjan入门经典题,用tarjan缩点,然后就变成一个有向无环图(DAG)了. 我们要考虑的问题是让它变成强连通,让DAG变成强连通就是把尾和头连起来,也就是入度和出度为0的点. 统计DAG入度和出度,然后计算头尾,最大的那个就是所求. 代码: /* * Author: illuz <iil

HDU 2767 Proving Equivalences (强联通)

http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2926    Accepted Submission(s): 1100 Problem Description Consider the followi

HDU 2767 Proving Equivalences 图论scc缩点

问一个图,最少需要加多少条边,使得这个图强联通. Tarjan缩点,重建图,令a=入度为0的scc个数,b=出度为0的scc个数,ans=max(a,b): 若图scc=1,本身强联通,ans=0: 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int MAXN = 20010;//点数 4 const int MAXM = 200100;//边数 5 struct Edge { 6 int to,next; 7 }edge[

HDU 2767 Proving Equivalences(强联通缩点)

Proving Equivalences Problem Description Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matrix. Prove that the following statements are equivalent: 1. A is invertible.2. Ax = b has exactly one solution

hdu 2767 Proving Equivalences(强连通入门题)

1 /************************************************* 2 Proving Equivalences(hdu 2767) 3 强连通入门题 4 给个有向图,求至少加多少条边使得图是所有点都是强连通的 5 由a->b->c->a易知n个点至少要n条边,每个出度和入度都要大 6 于1.先求所有所有强连通分量,把每个强连通分量看成一个点 7 在找每个点的出度和入度,最后还差的出度和入度的最大值就是 8 答案. 9 10 ************

HDU 2767 Proving Equivalences

 Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3676    Accepted Submission(s): 1352 Problem Description Consider the following exercise, found in a generic linear algeb

POJ 2553--The Bottom of a Graph【scc缩点构图 &amp;&amp; 求出度为0的scc &amp;&amp; 输出scc中的点】

The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9575   Accepted: 3984 Description We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called ver

HDU 2767 Proving Equivalences (Tarjan縮點)

Time limit :2000 ms Memory limit :32768 kB Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matrix. Prove that the following statements are equivalent: 1. A is invertible. 2. Ax = b has exactly one soluti