Gauss elimination Template

Gauss elimination :

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <stdio.h>
using namespace std;

const int MAXN = 50;

int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元
int free_num;

void Debug(int equ, int var){
    int i, j;
    for (i = 0; i < equ; i++){
        for (j = 0; j < var + 1; j++){
            cout << a[i][j] << " ";
        }
        cout << endl;
    }
    cout << endl;
}

int gcd(int a, int b){
    int t;
    while (b != 0){
        t = b;
        b = a%b;
        a = t;
    }
    return a;
}
int lcm(int a, int b){
    return a / gcd(a, b)*b;//先除后乘防溢出
}

// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ, int var){
    int i, j, k;
    int max_r;// 当前这列绝对值最大的行.
    int col;//当前处理的列
    int ta, tb;
    int LCM;
    int temp;
    int free_x_num;
    int free_index;

    for (int i = 0; i <= var; i++){
        x[i] = 0;
        free_x[i] = true;
    }

    //转换为阶梯阵.
    col = 0; // 当前处理的列
    for (k = 0; k < equ && col < var; k++, col++){// 枚举当前处理的行.
        // 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
        max_r = k;
        for (i = k + 1; i<equ; i++){
            if (abs(a[i][col])>abs(a[max_r][col])) max_r = i;
        }
        if (max_r != k){// 与第k行交换.
            for (j = k; j < var + 1; j++) swap(a[k][j], a[max_r][j]);
        }
        if (a[k][col] == 0){// 说明该col列第k行以下全是0了,则处理当前行的下一列.
            k--;
            continue;
        }
        for (i = k + 1; i < equ; i++){// 枚举要删去的行.
            if (a[i][col] != 0){
                LCM = lcm(abs(a[i][col]), abs(a[k][col]));
                ta = LCM / abs(a[i][col]);
                tb = LCM / abs(a[k][col]);
                if (a[i][col] * a[k][col] < 0)tb = -tb;//异号的情况是相加
                for (j = col; j < var + 1; j++)
                {
                    a[i][j] = a[i][j] * ta - a[k][j] * tb;
                }
            }
        }
    }

    //  Debug();

    // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
    for (i = k; i < equ; i++){ // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
        if (a[i][col] != 0) return -1;
    }
    // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
    // 且出现的行数即为自由变元的个数.
    if (k < var){
        // 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
        for (i = k - 1; i >= 0; i--){
            // 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.
            // 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.
            free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
            for (j = 0; j < var; j++){
                if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;
            }
            if (free_x_num > 1) continue; // 无法求解出确定的变元.
            // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
            temp = a[i][var];
            for (j = 0; j < var; j++){
                if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j];
            }
            x[free_index] = temp / a[i][free_index]; // 求出该变元.
            free_x[free_index] = 0; // 该变元是确定的.
        }
        return var - k; // 自由变元有var - k个.
    }
    // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
    // 计算出Xn-1, Xn-2 ... X0.
    for (i = var - 1; i >= 0; i--){
        temp = a[i][var];
        for (j = i + 1; j < var; j++){
            if (a[i][j] != 0) temp -= a[i][j] * x[j];
        }
        if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.
        x[i] = temp / a[i][i];
    }
    return 0;
}
int start[MAXN];
int endd[MAXN];

int main(){
    int t;
    cin >> t;
    while (t--){
        int n;
        cin >> n;
        for (int i = 0; i < n; i++) cin >> start[i];
        for (int i = 0; i < n; i++) cin >> endd[i];
        memset(a, 0, sizeof(a));
        int b, c;
        while (cin >> b >> c && (b || c)){
            a[c - 1][b - 1] = 1;
        }
        for (int i = 0; i < n; i++)a[i][i] = 1;
        for (int i = 0; i < n; i++)a[i][n] = start[i] ^ endd[i];
        //Debug(n, n);
        free_num = Gauss(n, n);
        if (free_num == -1) cout << "Oh,it‘s impossible~!!" << endl;
        else cout << (1 << free_num) << endl;
    }
}

时间: 2024-10-09 05:50:17

Gauss elimination Template的相关文章

高斯消元法(Gauss Elimination)【超详解&amp;模板】

高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组. 所以我们可以用初等行变换把增广矩阵转换为行阶梯阵,然后回代求出方程的解. 1.线性方程组 1)构造增广矩阵,即系数矩阵A增加上常数向量b(A|b) 2)通过以交换行.某行乘以非负常数和两行相加这三种初等变化将原系统转化为更简单的三角形式(triangular form) 注:这里的初等变化可以通过

线性代数-矩阵-【5】矩阵化简 C和C++实现

点击这里可以跳转至 [1]矩阵汇总:http://www.cnblogs.com/HongYi-Liang/p/7287369.html [2]矩阵生成:http://www.cnblogs.com/HongYi-Liang/p/7275278.html [3]矩阵加减:http://www.cnblogs.com/HongYi-Liang/p/7287403.html [4]矩阵点乘:http://www.cnblogs.com/HongYi-Liang/p/7287324.html [5]矩

【模板】常用

1 IO 优化 #define ID isdigit(c = *next++) #define IS isspace(c = *next++) struct Istream { int size; char *next, buf[20030731]; Istream & init(FILE *f = stdin) {fread(buf, 1, sizeof buf, f); next = buf; return *this;} Istream & operator >> (in

LU分解

function [L,U,p] = lutxloops(A) %LU Triangular factorization %   [L,U,p] = lup(A) produces a unit lower triangular matrix L, %   an upper triangular matrix U and a permutation vector p, %   so that L*U = A(p,:) [n,n] = size(A); p = (1:n)'; for k = 1:

高斯消元基础知识介绍

转载自:高斯消元法 高斯消元法(Gauss Elimination) 分析 & 题解 & 模板——czyuan原创 高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组.所以我们可以用初等行变换把增广矩阵转换为行阶梯阵,然后回代求出方程的解. 以上是线性代数课的回顾,下面来说说高斯消元法在编程中的应用. 首先,先介绍程序中高斯消元法的步骤:(我们

Solving Linear Equation

1. Gauss Elimination Method \((1\times 1)\) \(ax_1=b\) \(\rightarrow\) \(x_1=\frac{b}{a}\) \((2 \times 2)\) \(\begin{cases}a_{11}x_1+a_{12}x_2=b_1 \\ a_{21}x_1+a_{22}x_2=b_2\end{cases}\) Ex1: \[ \begin{cases}x_1+2x_2=5 \3x_1+4x_2=6\end{cases} \righta

Kruscal Template

Kruscal  elimination : 很裸的Kruscal Template(求最小生成树中最长路,即最短路中最长路) //#pragma comment(linker, "/STACK:16777216") //for c++ Compiler #include <stdio.h> #include <iostream> #include <climits> #include <cstring> #include <alg

NET Core项目定义Item Template

NET Core项目定义Item Template 作为这个星球上最强大的IDE,Visual Studio不仅仅提供了很多原生的特性,更重要的是它是一个可定制的IDE,比如自定义Project Template和Item Template就是一个非常有用的扩展点.这里我们主要关注Item Template,它时我们可以在"Add new Item"对话框中添加我们自定义的Item(如下图所示).如果不了解Item Template,Scott Gu的文章. 我们之前自定义了一些Ite

手把手教你创建Azure ARM Template

Azure的ARM模式在中国已经落地了.在ARM模式中,通过ARM的Template批量的创建各种资源是与ASM模式的最大的区别之一.目前Azure ARM的Template数量已经越来越多,更多的客户会选择采用Template的模式进行资源的部署: 在前面的文章中已经介绍了如何通过已有的Template修改成你所需要的模板,请参考: http://www.cnblogs.com/hengwei/p/5634380.html 本文将一步一步的创建一个最简单的存储账户的ARM Template,并