wa哭了,,t哭了,,还是看了题解。。。
8170436 | 2014-10-11 06:41:51 | njczy2010 | C - George and Job | GNU C++ | Accepted | 109 ms | 196172 KB |
8170430 | 2014-10-11 06:39:47 | njczy2010 | C - George and Job | GNU C++ | Wrong answer on test 1 | 61 ms | 196200 KB |
8170420 | 2014-10-11 06:37:14 | njczy2010 | C - George and Job | GNU C++ | Runtime error on test 23 | 140 ms | 196200 KB |
8170348 | 2014-10-11 06:16:59 | njczy2010 | C - George and Job | GNU C++ | Time limit exceeded on test 11 | 1000 ms | 196200 KB |
8170304 | 2014-10-11 06:05:15 | njczy2010 | C - George and Job | GNU C++ | Time limit exceeded on test 12 | 1000 ms | 196200 KB |
8170271 | 2014-10-11 05:53:29 | njczy2010 | C - George and Job | GNU C++ | Wrong answer on test 3 | 77 ms | 196200 KB |
8170266 | 2014-10-11 05:52:37 | njczy2010 | C - George and Job | GNU C++ | Wrong answer on test 3 | 62 ms | 196200 KB |
8170223 | 2014-10-11 05:39:00 | njczy2010 | C - George and Job | GNU C++ | Time limit exceeded on test 12 | 1000 ms | 196100 KB |
8170135 | 2014-10-11 05:07:06 | njczy2010 | C - George and Job | GNU C++ | Wrong answer on test 9 | 93 ms | 196100 KB |
8170120 | 2014-10-11 05:01:28 | njczy2010 | C - George and Job | GNU C++ | Wrong answer on test 5 | 78 ms | 196100 KB |
C. George and Job
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
The new ITone 6 has been released recently and George got really keen to buy it. Unfortunately, he didn‘t have enough money, so George was going to work as a programmer. Now he faced the following problem at the work.
Given a sequence of n integers p1, p2, ..., pn. You are to choose k pairs of integers:
[l1, r1], [l2, r2], ..., [lk, rk] (1 ≤ l1 ≤ r1 < l2 ≤ r2 < ... < lk ≤ rk ≤ n; ri - li + 1 = m),
in such a way that the value of sum is maximal possible. Help George to cope with the task.
Input
The first line contains three integers n, m and k (1 ≤ (m × k) ≤ n ≤ 5000). The second line contains n integers p1, p2, ..., pn (0 ≤ pi ≤ 109).
Output
Print an integer in a single line — the maximum possible value of sum.
Sample test(s)
Input
5 2 1 1 2 3 4 5
Output
9
Input
7 1 3 2 10 7 18 5 33 0
Output
61
转移方程为
dp[i][j]=max(dp[i+1][j],dp[i+m][j-1]+sum[i]); (转自:http://www.tuicool.com/articles/m6v6z23) C:显然是dp,设f[i][j]表示第i段的结尾为j时的最优值,显然f[i][j]=max{f[i-1][k]+sum[j]-sum[j-m]}(0<=k<=j-m) (转自:http://www.bkjia.com/ASPjc/881176.html)
不过这样是O(k*n^2),可能超时。
我们发现每一阶段的转移能用到的最优状态都是上一阶段的前缀最优值,于是dp时直接记录下来用来下面的转移,这样就不用枚举了,变为O(k*n)水过。
貌似卡内存,用了滚动数组。
1 #include<iostream> 2 #include<cstring> 3 #include<cstdlib> 4 #include<cstdio> 5 #include<algorithm> 6 #include<cmath> 7 #include<queue> 8 #include<map> 9 #include<set> 10 #include<string> 11 //#include<pair> 12 13 #define N 5005 14 #define M 1000005 15 #define mod 1000000007 16 //#define p 10000007 17 #define mod2 100000000 18 #define ll long long 19 #define LL long long 20 #define maxi(a,b) (a)>(b)? (a) : (b) 21 #define mini(a,b) (a)<(b)? (a) : (b) 22 23 using namespace std; 24 25 int n,m,k; 26 ll dp[N][N]; 27 ll p[N]; 28 ll ans; 29 ll sum[N]; 30 31 void ini() 32 { 33 memset(dp,0,sizeof(dp)); 34 memset(sum,0,sizeof(sum)); 35 int i; 36 ll te=0; 37 for(i=1;i<=n;i++){ 38 scanf("%I64d",&p[i]); 39 } 40 41 for(i=n-m+1;i<=n;i++){ 42 te+=p[i]; 43 } 44 sum[n-m+1]=te; 45 dp[n-m+1][1]=te; 46 // ma=te; 47 for(i=n-m;i>=1;i--){ 48 sum[i]=sum[i+1]+p[i]-p[i+m]; 49 } 50 //for(i=1;i<=n;i++) printf(" i=%d sum=%I64d\n",i,sum[i]); 51 } 52 53 void solve() 54 { 55 int i,j; 56 dp[n][1]=sum[n]; 57 for(i=n-1;i>=1;i--){ 58 for(j=k;j>=1;j--){ 59 if(i+m<=n+1) 60 dp[i][j]=max(dp[i+1][j],dp[i+m][j-1]+sum[i]); 61 else 62 dp[i][j]=dp[i+1][j]; 63 } 64 } 65 66 } 67 68 void out() 69 { 70 //for(int i=1;i<=n;i++){ 71 // for(int j=0;j<=k;j++){ 72 // printf(" i=%d j=%d dp=%I64d\n",i,j,DP(i,j)); 73 // } 74 // } 75 printf("%I64d\n",dp[1][k]); 76 } 77 78 int main() 79 { 80 // freopen("data.in","r",stdin); 81 //freopen("data.out","w",stdout); 82 // scanf("%d",&T); 83 // for(int ccnt=1;ccnt<=T;ccnt++) 84 // while(T--) 85 while(scanf("%d%d%d",&n,&m,&k)!=EOF) 86 { 87 //if(n==0 && k==0 ) break; 88 //printf("Case %d: ",ccnt); 89 ini(); 90 solve(); 91 out(); 92 } 93 94 return 0; 95 }