hiho#1033 : 交错和

描述

给定一个数 x,设它十进制展从高位到低位上的数位依次是 a0, a1, ..., an - 1,定义交错和函数:

f(x) = a0 - a1 + a2 - ... + ( - 1)n - 1an - 1

例如:

f(3214567) = 3 - 2 + 1 - 4 + 5 - 6 + 7 = 4

给定

输入

输入数据仅一行包含三个整数,l, r, k(0 ≤ l ≤ r ≤ 1018, |k| ≤ 100)。

输出

输出一行一个整数表示结果,考虑到答案可能很大,输出结果模 109 + 7。

提示

对于样例 ,满足条件的数有 110 和 121,所以结果是 231 = 110 + 121。

更多样例:

Input
4344 3214567 3
Output
611668829
Input
404491953 1587197241 1
Output
323937411
Input
60296763086567224 193422344885593844 10
Output
608746132
Input
100 121 -1
Output
120

样例输入

100 121 0

样例输出

231

显然是很裸的数位DP,但写起来就有些MD了。设f[len][x][k]表示长度为len,首位为x,交错和为k的数之和,g[len][x][k]表示长度为len,首位为x,交错和为k的数的个数。然后转移比较简单自己歪歪或看我的code,询问时注意:rep(i,0,len-2) rep(j,1,9) (res+=f[i][j][k+200])%=MOD;    MD调了2h。

#include<cstdio>
#include<cctype>
#include<queue>
#include<cmath>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i!=-1;i=next[i])
using namespace std;
inline int read() {
    int x=0,f=1;char c=getchar();
    for(;!isdigit(c);c=getchar()) if(c==‘-‘) f=-1;
    for(;isdigit(c);c=getchar()) x=x*10+c-‘0‘;
    return x*f;
}
typedef long long ll;
ll f[20][10][410],g[20][10][410],xp[20];
const int MOD=1000000007;
void init() {
    rep(i,0,9) f[0][i][i+200]=i,g[0][i][i+200]=1;
    xp[0]=1;
    rep(len,1,19) {
        xp[len]=(xp[len-1]*10)%MOD;
        rep(k,-200,200) rep(x,0,9) rep(y,0,9) if(x-k>=-200&&x-k<=200) {
            f[len][x][x-k+200]+=f[len-1][y][k+200]+(g[len-1][y][k+200]*(xp[len]*x))%MOD;
            (g[len][x][x-k+200]+=g[len-1][y][k+200])%=MOD;
            f[len][x][x-k+200]%=MOD;
        }
    }
}
int bit[20],len,k;
ll cal(ll x) {
    if(x<=0) return 0;
    ll res=0,cur2=0;int cur=0,c=0;len=0;
    while(x) bit[len++]=x%10,x/=10;
    rep(i,0,len-2) rep(j,1,9) (res+=f[i][j][k+200])%=MOD;
    dwn(i,len-1,0) {
        c^=1;
        rep(j,0,bit[i]-1) {
            if(!j&&i==len-1) continue;
            if(c) (res+=f[i][j][k-cur+200]+g[i][j][k-cur+200]*cur2)%=MOD;
            else (res+=f[i][j][cur-k+200]+g[i][j][cur-k+200]*cur2)%=MOD;
        }
        if(c) cur+=bit[i];
        else cur-=bit[i];
        (cur2+=bit[i]*xp[i])%=MOD;
    }
    return res;
}
int main() {
    init();
    ll l,r;
    scanf("%lld%lld",&l,&r);k=read();
    printf("%lld\n",(cal(r+1)-cal(l)+MOD)%MOD);
    return 0;
}

时间: 2024-12-08 06:02:57

hiho#1033 : 交错和的相关文章

hiho 1033 —— 交错和 【数位DP】

1033 : 交错和 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个数 x,设它十进制展从高位到低位上的数位依次是 a0, a1, ..., an - 1,定义交错和函数: f(x) = a0 - a1 + a2 - ... + ( - 1)n - 1an - 1 例如: f(3214567) = 3 - 2 + 1 - 4 + 5 - 6 + 7 = 4 给定 l, r, k,求在 [l, r] 区间中,所有 f(x) = k 的 x 的和,即: 输入

[hihocoder 1033]交错和 数位dp/记忆化搜索

#1033 : 交错和 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个数 x,设它十进制展从高位到低位上的数位依次是 a0,?a1,?...,?an?-?1,定义交错和函数: f(x)?=?a0?-?a1?+?a2?-?...?+?(?-?1)n?-?1an?-?1 例如: f(3214567)?=?3?-?2?+?1?-?4?+?5?-?6?+?7?=?4 给定 输入 输入数据仅一行包含三个整数,l,?r,?k(0?≤?l?≤?r?≤?1018,?|k|

hihoCoder #1033 : 交错和 [ 数位dp ]

传送门 #1033 : 交错和 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个数 x,设它十进制展从高位到低位上的数位依次是 a0, a1, ..., an - 1,定义交错和函数: f(x) = a0 - a1 + a2 - ... + ( - 1)n - 1an - 1 例如: f(3214567) = 3 - 2 + 1 - 4 + 5 - 6 + 7 = 4 给定 l, r, k,求在 [l, r] 区间中,所有 f(x) = k 的 x 的和,即

【hihoCoder】1033: 交错和

初探数位dp 介绍了数位类统计的基础知识.以下列出其中的基础点: 基本问题 统计在区间[l, r]中满足条件的数的个数 思路 1. [l, r] 将问题转换为 在[0, r]中满足条件的个数 - 在[0, l)满足条件的个数 2. 求解 区间[0, n]满足条件的个数 性质:一个小于n的数m,一定是从高位到低位在某一位小于n的对应位的一个数   数值 百位 十位 个位   n 358 3 5 8   m 350 3 5 0 0<8 m 349 3 4 9 4<5 遍历所有小于n的数:从高位到低

hihoCoder #1033 : 交错和 (数位Dp)

题目大意: 给定一个数 x,设它十进制展从高位到低位上的数位依次是 a0, a1, ..., an - 1,定义交错和函数: f(x) = a0 - a1 + a2 - ... + ( - 1)n - 1an - 1 例如: f(3214567) = 3 - 2 + 1 - 4 + 5 - 6 + 7 = 4 给定 输入 输入数据仅一行包含三个整数,l, r, k(0 ≤ l ≤ r ≤ 1018, |k| ≤ 100). 输出 输出一行一个整数表示结果,考虑到答案可能很大,输出结果模 109 

hihoCoder 1033: 交错和

(1)题目描述: 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个数 x,设它十进制展从高位到低位上的数位依次是 a0, a1, ..., an - 1,定义交错和函数: f(x) = a0 - a1 + a2 - ... + ( - 1)n - 1an - 1 例如: f(3214567) = 3 - 2 + 1 - 4 + 5 - 6 + 7 = 4 给定 输入 输入数据仅一行包含三个整数,l, r, k(0 ≤ l ≤ r ≤ 1018, |k| ≤ 

[数位dp] hihoCoder 1033 交错和

题意: 问你[l,r]区间内的所有满足各个位一加一减最后和是k的全有数的和. 思路: 数位dp dp[site][sum][p][k] 代表site位,和是sum,当前是加还是减,最后和是k的数的和以及个数 也就是存成结构体. 然后求的时候 ans.cnt=(ans.cnt+cur.cnt)%mod; ans.sum=(ans.sum+cur.sum+cur.cnt*tep)%mod; tep为i*当前位的位权. 代码: #include"cstdlib" #include"

数位dp/记忆化搜索

一.引例 #1033 : 交错和 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个数 x,设它十进制展从高位到低位上的数位依次是 a0, a1, ..., an - 1,定义交错和函数: f(x) = a0 - a1 + a2 - ... + ( - 1)n - 1an - 1 例如: f(3214567) = 3 - 2 + 1 - 4 + 5 - 6 + 7 = 4 给定 l, r, k,求在 [l, r] 区间中,所有 f(x) = k 的 x 的和,

交错和 hihocoder竞赛题 1033