AI人脸识别的测试重点

最常见的 AI应用就是人脸识别,因此这篇文章从人脸识别的架构和核心上,来讲讲测试的重点。

测试之前需要先了解人脸识别的整个流程,红色标识代表的是对应AI架构中的各个阶段

首先是人脸采集。

安装拍照摄像设备之后,需要在动态的场景与复杂的背景中判断是否存在人脸,并分离出这种面像。然后采集到人脸的照片。

因此采集过程是非常重要的,一需要能够采集到内容,二采集的内容能够分离出来是人脸。

而特征提取的原理是,将获取的人脸照片进行色彩矫正、光线调整,五官定位和脸部分割,将人脸的鼻子、眼睛、嘴巴等视为一个个特征点,计算每个特征点所在的位置、距离、角度。

正常场景下,在合适的光源下,采集人脸的正面,包含正常完整的人脸轮廓,毫无遮挡的五官,清晰的被拍照设备拍到,这样才能够准确的捕捉到特征,并判断出来。
但对于测试同学来讲,还要考虑异常场景的表现,即任何可能造成拍不到,拍不清晰,判断不出是人脸,或者不完整的表现。
另外判断拍摄的样品是否包含人脸时,原理上一般会通过样品学习、或者是参考模版来,比如先设计一个标准人脸的模版,包含标准的特征、有一定的结构分布、相对规律的肤色分布。
那么针对这个原理,在测试时需要考虑不同肤色,或者是面部特征过于复杂的案例,比如脸上有皱纹的老人。
再看人脸比对。
实际应用场景中,人脸比对的本质是照片的比对。比对两张脸中,其中一张脸一般来自于当前场景拍摄的照片,另一张照片一般来自于数据库中的照片。
数据库的照片是用来作为比对标准的,也是固定且一般不可随意篡改的。
因此,从测试角度来看,需要覆盖到这些特殊照片的行为。
目前市面上主流的几种抗攻击的照片采集方式主要有三种:活体检测、连续检测、3D检测。
1) 活体检测:判断用户是否为正常操作,通过指定用户做随机动作,一般有张嘴、摇头、点头、凝视、眨眼等等,防止照片攻击。 判断用户是否真实在操作,指定用户上下移动手机,防止视频攻击和非正常动作的攻击。
2) 3D检测:验证采集到的是否为立体人像,能够防止平面照片、不同弯曲程度的照片等。
3) 连续检测:通过连续的检测,验证人脸运动轨迹是否正常,防止防止跳过活体检测直接替换采集的照片,也能够防止中途切换人。
其中活体检测是现在应用最广的一种抗攻击人脸数据采集方式。
因为不管是直接对照片检测,还是对活体进行检测,最终的目的都是采集人脸不同角度的照片。因此如果活体检测要与连续性检测和3D 检测结合使用。
计算机只会告诉我们比对的两张脸的相似程度,是80%或者是20%,但不会告诉我们这两张脸是否为同一个人。
因此人脸比对有一个阈值的概念。设置相似度大于x%的时候,视为人脸比对通过,小于x%的时候,视为人脸比对不通过。设定阈值的过程就是模型评估。
阈值设定过低,则人脸比对通过率高,误报率可能也会升高。
阈值设定过高,则人脸比对通过率低,误报率可能也会降低也可能会增高。
因此在人脸识别的测试中,除了要关注通过率,还要关注误报率。这两项也可以统称为是查准率。
举个例子:

有8个样本,分别拿十张照片与数据库证件照进行人脸比对,其中3个确实是人证统一,另外四个人证不同。比对的结果相似度如下:


假设阈值设定60%,则人脸比对通过率=4/8=50%,误报率=1/8=12.5%。
假设阈值设定70%,则人脸比对通过率=2/8=25%,误报率=1/8=12.5%。
假设阈值设定50%,则人脸比对通过率=5/8=62.5%,误报率=2/8=25%。

目前人脸识别在金融、教育、景区、出入境、机场等领域已经大量应用,方便的同时也带来了一些问题,怎么做好人脸识别的测试,还是一个需要思考和深挖的课题。上述只是我近期在测试过程中的总结,分享大家。
————————————————
版权声明:本文为CSDN博主「alice_tl」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/alice_tl/article/details/79736342

原文地址:https://www.cnblogs.com/mawenqiangios/p/11641843.html

时间: 2024-10-01 22:57:54

AI人脸识别的测试重点的相关文章

技能节-AI人脸识别

我们收到技能节项目的通知是在两周之前,项目要求做个人脸评分系统. 两周时间写一个"人脸评分系统",好像时间比较紧了,还好我们完成了~这个项目是将摄像头捕获到的包含人脸的图像传输到百度AI的云服务器中,然后调用运用了百度AI的人脸对比API分析图中的数据,最后将分析出的数据传送回来, 在使用这个项目时需要连接互联网. 当然百度AI的人脸对比API不会让你免费使用,你必须要成为百度AI的开发者,在搜索栏中输入(AI,baidu,com),在控制台中选择人脸识别,然后注册登录,接着在左边的导

openFace 人脸识别框架测试

openface  人脸识别框架  但个人感觉精度还是很一般 openface的githup文档地址:http://cmusatyalab.github.io/openface/ openface的安装: 官方推荐用docker来安装openface,这样方便快速不用自己去安装那么多依赖库: docker pull bamos/openface docker run -p 9000:9000 -p 8000:8000 -t -i bamos/openface /bin/bash 也就两行代码的事

干货 | AI人脸识别之人脸搜索

本文档将利用京东云AI SDK来实践人脸识别中的人脸搜索功能,主要涉及到分组创建/删除.分组列表获取.人脸创建/删除.人脸搜索,本次实操的最终效果是:创建一个人脸库,拿一张图片在人脸库中搜索出相似度最高的一张,实现1:N的人脸识别,操作示意图如下: 一.准备工作 1. 创建AK/SK 登陆京东云控制台:https://console.jdcloud.com,点击右上角账户AccessKey 管理,接着如图点击创建Access Key 2. 购买人脸搜索服务 人脸搜索通过 API 调用次数计费,目

人脸识别---闭集测试评价指标CMC曲线(rank)

摘要:本文主要讲解如何得到CMC曲线. CMC曲线就是算一种top-k的击中概率,主要用闭集测试.比如有n个注册样本,现在想测试性能,测试样本依次和n个注册样本算取一个距离,然后排序,看类类样本位于前top-k,最后统计得到CMC曲线.计算CMC曲线的函数代码如下: function accuracy = calrank(distance,rankvalue,info) for k = 1:length(rankvalue) count = 0; for i = 1:size(distance,

人脸识别---开集测试评价指标ROC曲线

摘要:本文主要讲开集测试指标ROC曲线. 开集测试更加符合实际的场景.一般要得到ROC曲线需要准备三个数据集,一个是gallery集,称为注册集,第二个是包含gallery集的ID的probe集,和不包含gallery集的ID的probe集,我们只需要计算类类比对分数和类间比对分数,这是一种1:n的比对方式. 代码如下: function [result,pre_FPR,pre_TPR]=drawROC(scores,labels,axisROC) [sort_scores,idx]=sortr

人脸识别门禁产品良莠不齐的市场

今天小编在某新闻媒体上看到一篇报导"不用刷指纹就能打开指纹锁",张店一居名家被盗,用户怀疑网购锁具出了问题.经公安机关调查取证,确实是所谓的指纹开锁,指纹识别纯属摆设.小编不禁想到了时下最热门的AI人脸识别,目前人脸识别落地应用产品有人脸识别门禁.人脸识别闸机.人脸识别锁等等,并且已成为小区.商务写字楼安全.快捷通行管理的标配.但市面上人脸识别门禁产品鱼龙混杂,让用户无法选择到真正适合自己的.好用的产品.现阶段人脸识别产品生产厂商遇到的用户,在第一时间寻问产品时,不去关注产品的品质.性

一文读懂人脸识别技术

近日,人脸识别技术因多次在抓逃犯的过程中"立功",再度走"红".从20世纪60年代起,人脸识别研究开启,发展到今天有哪些进展?该产业里的竞争,是人工智能投资泡沫带来的浮躁,还是市场规模将持续突进? 何谓人脸识别技术? 20世纪60年代,人脸识别工程化应用研究正式开启.初期的方法主要利用了人脸的几何结构,通过分析人脸器官特征点及其之间的拓扑关系进行辨识.这种方法简单直观,但是一旦人脸姿态.表情发生变化,则精度严重下降. 如今的解决方案多是基于主动近红外图像的多光源人脸

浅谈人脸识别中的loss 损失函数

浅谈人脸识别中的loss 损失函数 2019-04-17 17:57:33 liguiyuan112 阅读数 641更多 分类专栏: AI 人脸识别 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u012505617/article/details/89355690 在人脸识别中,算法的提高主要体现在损失函数的设计上,损失函数会对整个网络的优化有着导向性的作用.我们看到许多常用的损失函数

腾讯技术工程 |腾讯AI Lab刷新人脸识别与检测两大测评国际记录,技术日调用超六亿

2017年12月18日,深圳 - 腾讯AI Lab研发的Face R-FCN和FaceCNN算法分别在国际最大.最难的人脸检测平台WIDER FACE与最热门权威的人脸识别平台MegaFace多项评测指标中荣膺榜首,刷新行业纪录,展现其在计算机视觉领域中,特别是人脸技术上的强劲实力. 研究上,目前腾讯AI Lab已通过arXiv平台发表论文公开人脸检测算法部分技术细节,促进企业与学界"共享AI"研究成果:应用上,该人脸技术已接入腾讯互联网+公共服务平台等多个应用场景,每日技术调用量超六