tensorflow(三)

1.placeholder

一个数据占位符,用于在构建一个算法时留出一个位置,然后在run时填入数据。

x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)

z = x*y
with tf.Session() as sess:
    print(sess.run(z,feed_dict={x:3.0,y:2.0}))

2.variable

存储节点作为数据流图中的有状态节点,其主要作用是在多次执行相同数据流图时存储特定的参数,如深度学习或机器学习的模型参数。对于无状态节点,其输出由输入张量和节点操作共同确定,对于有状态节点

如存储节点,其输出还会受到节点内部保存的状态值影响。

x = tf.placeholder(tf.float32)
W = tf.Variable(1.0)
b = tf.Variable(1.0)

y = W*x + b
with tf.Session() as sess:
    tf.global_variables_initializer().run()
    fetch = y.eval(feed_dict={x:3.0})
    print(fetch)

3.Session

tensorflow所有的操作必须在会话中执行,所有计算任务都由它分发到其连接的执行引擎完成。

会话分为普通会话和交互式会话。

普通会话的典型使用流程,创建会话,运行会话,关闭会话

交互式会话,为用户提供类似shell的交互式编程环境,交互式会话在创建是将自己注册为默认会话,在普通会话中如果要执行张量的eval或op的run必须借助with,交互式会话中不需要。

a = tf.constant(5.0)
b = tf.constant(6.0)
c = a*b

sess = tf.InteractiveSession()
print(c.eval())
sess.close()

二、优化器

1.损失函数与优化算法

损失函数分为平方损失函数,交叉熵损失函数,指数损失函数

优化算法

tensorflow提供的优化器

Adadelta,Adagrad,Adagrad Dual Averaging,Adam,Ftrl,Gradient Descent,Momentum,Proximal Adagrad,Proximal Gradient Descent,Rmsprop,Synchronize Replicas

原文地址:https://www.cnblogs.com/yangyang12138/p/12078931.html

时间: 2024-10-10 13:38:27

tensorflow(三)的相关文章

TensorFlow(三)---------正则化

TensorFlow正则化经常被用于Deep-Learn中,泛化数据模型,解决过拟合问题.再深度学习网络只有在有足够大的数据集时才能产生惊人的学习效果.当数据量不够时,过拟合的问题就会经常发生.然而,只选取我们需要的数据量的模型,就会非常难以继续进行泛化和优化.所以正则化技术孕育而生~~~~~~~ 正则化的基本思想是向损失函数添加一个惩罚项用于惩罚大的权重,隐式的减少自由参数的数量.可以达到弹性地适应不同数据量训练的要求而不产生过拟合的问题.~~~~~~ 1 #正则化 2 import tens

TensorFlow(一)

一  基本概念: Tensorflow是一个计算密集型的编程系统,使用图(graphs)来表示计算任务,图(graphs)中的节点称之为op(operation),一个op获得0个或多个Tensor,执行计算,产生0个或多个Tensor. Tensor 看作是一个 n 维的数组或列表.图必须在会话(Session)里被启动 使用图(graphs)来表示计算任务在被称之为会话(Session)的上下文(context)中执行图使用tensor表示数据通过变量(Variable)维护状态使用feed

深度学习框架哪家强:TensorFlow?Caffe?MXNet?Keras?PyTorch?

深度学习框架哪家强:TensorFlow?Caffe?MXNet?Keras?PyTorch?对于这几大框架在运行各项深度任务时的性能差异如何,各位读者不免会有所好奇. 微软数据科学家Ilia Karmanov最新测试的结果显示,亚马逊MXNet在CNN.RNN与NLP情感分析任务上性能强劲,而TensorFlow仅擅长于特征提取. 测试详情更新在Ilia Karmanov的GitHub项目DeepLearningFrameworks(https://github.com/ilkarman/De

教程 | 没有博士学位,照样玩转TensorFlow深度学习

香港科技大学TensorFlow三天速成课件 https://blog.csdn.net/zhongxon/article/details/54709347 香港科技大学TensorFlow三天速成课件 https://blog.csdn.net/gh13uy2ql0n5/article/details/78173679 机器学习算法总结--线性回归和逻辑回归 https://blog.csdn.net/lc013/article/details/55002463 机器学习十大算法系列(一)--

Tensorflow机器学习入门——常量、变量、placeholder和基本运算

一.这里列出了tensorflow的一些基本函数,比较全面:https://blog.csdn.net/M_Z_G_Y/article/details/80523834 二.这里是tensortflow的详细教程:http://c.biancheng.net/tensorflow/ 三.下面程序是我学习常量.变量.placeholder和基本运算时形成的小函数 import tensorflow as tf print(tf.__version__)#打印Tensorflow版本 print(t

tflite模型的生成

由于IOS App需要使用已训练的tensorflow模型进行物体检测,特将此过程记录下来已备不时之需. 一.tflite是什么 TensorFlow Lite 的设计旨在在各种设备上高效执行模型.这种高效部分源于在存储模型时,采用了一种特殊的格式.TensorFlow 模型在能被 TensorFlow Lite 使用前,必须转换成这种格式. 由上图可知: tflite是从训练的模型转换而来的: tflite是为了在App设备上使用: 二.从训练结果到tflite 1.ckpt训练模型说明 训练

【tensorflow:Google】三、tensorflow入门

[一]计算图模型 节点是计算,边是数据流, a = tf.constant( [1., 2.] )定义的是节点,节点有属性 a.graph 取得默认计算图 g1 = tf.get_default_graph() 初始化计算图 g1 = tf.Graph() 设置default图 g1.as_default() 定义变量: tf.get_variable('v') 读取变量也是上述函数 对图指定设备 g.device('/gpu:0') 可以定义集合来管理计算图中的资源, 加入集合 tf.add_

使用亚马逊的云服务器EC2做深度学习(三)配置TensorFlow

这是<使用亚马逊的云服务器EC2做深度学习>系列的第三篇文章. (一)申请竞价实例  (二)配置Jupyter Notebook服务器  (三)配置TensorFlow TensorFlow是Google发布的深度学习框架,支持Python和C++的接口.TensorFlow既可以用于学术研究,也可以用于生产环境.许多Google的内部服务,就使用了TensorFlow,比如Gmail.语音识别等. 网络上TensorFlow的教程也很丰富,官方文档在第一时间就被翻译成来中文. 如果让我来评价

tensorflow:实战Google深度学习框架第三章

tensorflow的计算模型:计算图–tf.Graph tensorflow的数据模型:张量–tf.Tensor tensorflow的运行模型:会话–tf.Session tensorflow可视化工具:TensorBoard 通过集合管理资源:tf.add_to_collection.tf.get_collection Tensor主要三个属性:名字(name).维度(shape).类型(type) #张量,可以简单的理解为多维数组 import tensorflow as tf a =