分组卷积和深度可分离卷积

https://zhuanlan.zhihu.com/p/65377955

分组卷积:把特征图分成g组,分别用g组卷积核进行卷积然后在通道数相加

深度可分离卷积将卷积操作中的滤波和维数变换分开成两组卷积

原文地址:https://www.cnblogs.com/baitian963/p/12090321.html

时间: 2024-10-25 02:43:07

分组卷积和深度可分离卷积的相关文章

Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是根据现有深度学习教程<UFLDL教程>中的算法,在SparkMLlib中的实现.具体Spark MLlib Deep Learning(深度学习)目录结构: 第一章Neural Net(NN) 1.源码 2.源码解析 3.实例 第二章D

Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2

3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 2基础及源码解析 2.1 Convolution Neural Network卷积神经网络基础知识 1)基础知识: 自行google,百度,基础方面的非常多,随便看看就可以,只是很多没有把细节说得清楚和明白: 能把细节说清

Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3

3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 3实例 3.1 测试数据 按照上例数据,或者新建图片识别数据. 3.2 CNN实例 //2 测试数据 Logger.getRootLogger.setLevel(Level.WARN) valdata_path="/use

深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)

一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32*32 卷积层:2个 降采样层(池化层):2个 全连接层:2个 输出层:1个.10个类别(数字0-9的概率) LeNet-5网络是针对灰度图进行训练的,输入图像大小为32*32*1,不包含输入层的情况下共有7层,每层都包含可训练参数(连接权重).注:每个层有多个Feature Map,每个Featu

深度学习—卷积的理解

1.参数共享的道理 如果在图像某些地方探测到一个水平的边界是很重要的,那么在其他一些地方也会同样是有用的,这是因为图像结构具有平移不变性.所以在卷积层的输出数据体的55x55个不同位置中,就没有必要重新学习去探测一个水平边界了. 在反向传播的时候,都要计算每个神经元对它的权重的梯度,但是需要把同一个深度切片上的所有神经元对权重的梯度累加,这样就得到了对共享权重的梯度.这样,每个切片只更新一个权重集. 2.归一化层效果有限,可以不用 3.全连接层转化为卷积层 在两种变换中,将全连接层转化为卷积层在

卷积在深度学习中的作用(转自http://timdettmers.com/2015/03/26/convolution-deep-learning/)

卷积可能是现在深入学习中最重要的概念.卷积网络和卷积网络将深度学习推向了几乎所有机器学习任务的最前沿.但是,卷积如此强大呢?它是如何工作的?在这篇博客文章中,我将解释卷积并将其与其他概念联系起来,以帮助您彻底理解卷积. 已经有一些关于深度学习卷积的博客文章,但我发现他们都对不必要的数学细节高度混淆,这些细节没有以任何有意义的方式进一步理解.这篇博客文章也会有很多数学细节,但我会从概念的角度来看待他们,在这里我用每个人都应该能够理解的图像表示底层数学.这篇博文的第一部分是针对任何想要了解深度学习中

《卷积神经网络的Python实现》PDF代码+《解析深度学习卷积神经网络原理与视觉实践》PDF分析

CNN正在革新几个应用领域,如视觉识别系统.自动驾驶汽车.医学发现.创新电子商务等.需要在专业项目或个人方案中利用复杂的图像和视频数据集来实现先进.有效和高效的CNN模型. 深度卷积网络DCNN是目前十分流行的深度神经网络架构,它的构造清晰直观,效果引人入胜,在图像.视频.语音.语言领域都有广泛应用. 深度学习,特别是深度卷积神经网络是人工智能的重要分支领域,卷积神经网络技术也被广泛应用于各种现实场景,在许多问题上都取得了超越人类智能的结果. <卷积神经网络的Python实现>作为深度学习领域

一维卷积及多维卷积

在泛函分析中,卷积.旋积或摺积(Convolution)是通过两个函数 f(x) 和 g(x) 生成第三个函数的一种数学算子: 表征函数 f(x) 与 g(x) 经过翻转和平移的重叠部分的面积. 1 一维卷积 1.1 一维卷积公式 原文地址:https://www.cnblogs.com/gengyi/p/9508917.html

深度学习卷积神经网络大事件一览

深度学习(DeepLearning)尤其是卷积神经网络(CNN)作为近几年来模式识别中的研究重点,受到人们越来越多的关注,相关的参考文献也是层出不穷,连续几年都占据了CVPR的半壁江山,但是万变不离其宗,那些在深度学习发展过程中起到至关重要的推动作用的经典文献依然值得回味,这里依据时间线索,对CNN发展过程中出现的一些经典文献稍作总结,方便大家在研究CNN时追本溯源,在汲取最新成果的同时不忘经典. 首先这里给出CNN在发展过程中的一些具有里程碑意义的事件和文献: 对于CNN最早可以追溯到1986