机器学习逻辑回归算法推导

1.引自https://www.cnblogs.com/bnuvincent/p/9695666.html

2. 基本原理

Logistic Regression和Linear Regression的原理是相似的,按照我自己的理解,可以简单的描述为这样的过程:

(1)找一个合适的预测函数(Andrew Ng的公开课中称为hypothesis),一般表示为h函数,该函数就是我们需要找的分类函数,它用来预测输入数据的判断结果。这个过程时非常关键的,需要对数据有一定的了解或分析,知道或者猜测预测函数的“大概”形式,比如是线性函数还是非线性函数。

(2)构造一个Cost函数(损失函数),该函数表示预测的输出(h)与训练数据类别(y)之间的偏差,可以是二者之间的差(h-y)或者是其他的形式。综合考虑所有训练数据的“损失”,将Cost求和或者求平均,记为J(θ)函数,表示所有训练数据预测值与实际类别的偏差。

(3)显然,J(θ)函数的值越小表示预测函数越准确(即h函数越准确),所以这一步需要做的是找到J(θ)函数的最小值。找函数的最小值有不同的方法,Logistic Regression实现时有的是梯度下降法(Gradient Descent)。

3. 具体过程

3.1  构造预测函数

Logistic Regression虽然名字里带“回归”,但是它实际上是一种分类方法,用于两分类问题(即输出只有两种)。根据第二章中的步骤,需要先找到一个预测函数(h),显然,该函数的输出必须是两个值(分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:

对应的函数图像是一个取值在0和1之间的S型曲线(图1)。

图1

接下来需要确定数据划分的边界类型,对于图2和图3中的两种数据分布,显然图2需要一个线性的边界,而图3需要一个非线性的边界。接下来我们只讨论线性边界的情况。

图2

图3

对于线性边界的情况,边界形式如下:

构造预测函数为:

hθ(x)函数的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:

3.2  构造Cost函数

Andrew Ng在课程中直接给出了Cost函数及J(θ)函数如式(5)和(6),但是并没有给出具体的解释,只是说明了这个函数来衡量h函数预测的好坏是合理的。

实际上这里的Cost函数和J(θ)函数是基于最大似然估计推导得到的。下面详细说明推导的过程。(4)式综合起来可以写成:

取似然函数为:

对数似然函数为:

最大似然估计就是要求得使l(θ)取最大值时的θ,其实这里可以使用梯度上升法求解,求得的θ就是要求的最佳参数。但是,在Andrew Ng的课程中将J(θ)取为(6)式,即:

因为乘了一个负的系数-1/m,所以J(θ)取最小值时的θ为要求的最佳参数。

3.3  梯度下降法求J(θ)的最小值

J(θ)的最小值可以使用梯度下降法,根据梯度下降法可得θ的更新过程:

式中为α学习步长,下面来求偏导:

上式求解过程中用到如下的公式:

因此,(11)式的更新过程可以写成:

因为式中α本来为一常量,所以1/m一般将省略,所以最终的θ更新过程为:

另外,补充一下,3.2节中提到求得l(θ)取最大值时的θ也是一样的,用梯度上升法求(9)式的最大值,可得:

观察上式发现跟(14)是一样的,所以,采用梯度上升发和梯度下降法是完全一样的,这也是《机器学习实战》中采用梯度上升法的原因。

3.4  梯度下降过程向量化

关于θ更新过程的vectorization,Andrew Ng的课程中只是一带而过,没有具体的讲解。

《机器学习实战》连Cost函数及求梯度等都没有说明,所以更不可能说明vectorization了。但是,其中给出的实现代码确是实现了vectorization的,图4所示代码的32行中weights(也就是θ)的更新只用了一行代码,直接通过矩阵或者向量计算更新,没有用for循环,说明确实实现了vectorization,具体代码下一章分析。

文献[3]中也提到了vectorization,但是也是比较粗略,很简单的给出vectorization的结果为:

且不论该更新公式正确与否,这里的Σ(...)是一个求和的过程,显然需要一个for语句循环m次,所以根本没有完全的实现vectorization,不像《机器学习实战》的代码中一条语句就可以完成θ的更新。

下面说明一下我理解《机器学习实战》中代码实现的vectorization过程。

约定训练数据的矩阵形式如下,x的每一行为一条训练样本,而每一列为不同的特称取值:

约定待求的参数θ的矩阵形式为:

先求x.θ并记为A

hθ(x)-y并记为E

g(A)的参数A为一列向量,所以实现g函数时要支持列向量作为参数,并返回列向量。由上式可知hθ(x)-y可以由g(A)-y一次计算求得。

再来看一下(15)式的θ更新过程,当j=0时:

同样的可以写出θj

综合起来就是:

综上所述,vectorization后θ更新的步骤如下:

(1)求A=x.θ

(2)求E=g(A)-y

(3)求θ:=θ-α.x‘.E,x‘表示矩阵x的转置。

也可以综合起来写成:

前面已经提到过:1/m是可以省略的。

原文地址:https://www.cnblogs.com/liunaiming/p/11958928.html

时间: 2024-10-03 16:54:17

机器学习逻辑回归算法推导的相关文章

4.机器学习之逻辑回归算法

理论上讲线性回归模型既可以用于回归,也可以用于分类.解决回归问题,可以用于连续目标值的预测.但是针对分类问题,该方法则有点不适应,因为线性回归的输出值是不确定范围的,无法很好的一一对应到我们的若干分类中.即便是一个二分类,线性回归+阈值的方式,已经很难完成一个鲁棒性很好的分类器了.为了更好的实现分类,逻辑回归诞生了.逻辑回归(Logistic Regression)主要解决二分类问题,用来表示某件事情发生的可能性.逻辑回归是假设数据服从Bernoulli分布的,因此LR也属于参数模型,他的目的也

机器学习---逻辑回归(二)(Machine Learning Logistic Regression II)

在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在来看一下多分类的情况. 现实中相对于二分类问题,我们更常遇到的是多分类问题.多分类问题如何求解呢?有两种方式.一种是方式是修改原有模型,另一种方式是将多分类问题拆分成一个个二分类问题解决. 先来看一下第一种方式:修改原有模型.即:把二分类逻辑回归模型变为多分类逻辑回归模型. (二分类逻辑回归称为binary

逻辑回归算法-通俗易懂易实现

转自https://www.cnblogs.com/hum0ro/p/9652674.html,看到介绍的逻辑回归很容易理解算法原理及实现,拿来存档做记录 一直做图像处理算法和视频方面的嵌入式应用软件,早起研究和应用过神经网络算法,一直没有了解其他分类的机器学习算法,这段时间用空学习研究这些算法,如k-means,em聚类算法,查阅了许多资料,算法推倒的,结合举例说明有个直观印象,这样可以更好地理解算法,方便实现 1.什么是逻辑回归 在前面讲述的回归模型中,处理的因变量都是数值型区间变量,建立的

(7) 逻辑回归算法

逻辑回归算法原理推导 逻辑回归,虽然叫回归,但还是一个分类算法  逻辑回归求解 原文地址:https://www.cnblogs.com/traditional/p/9385259.html

21-城里人套路深之用python实现逻辑回归算法

如果和一个人交流时,他的思想像弹幕一样飘散在空中,将是怎样的一种景象?我想大概会毫不犹豫的点关闭的.生活为啥不能简单明了?因为太直白了令人乏味.保留一些不确定性反而扑朔迷离,引人入胜.我们学习了线性回归,对于损失函数及权重更新公式理解起来毫无压力,这是具体直白的好处.然而遇到抽象晦涩的逻辑回归,它的损失函数及权重更新公式就经历了从p(取值范围0~1)->p/(1-p)(取值范围0~+oo)->z=log(p/(1-p))(取值范围-oo~+oo)->p=1/1+e^(-z)->极大

SparkMLlib学习分类算法之逻辑回归算法

SparkMLlib学习分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693836) 逻辑回归与线性回归类似,但它不属于回归分析家族(主要为二分类),而属于分类家族,差异主要在于变量不同,因此其解法与生成曲线也不尽相同.逻辑回归是无监督学习的一个重要算法,对某些数据与事物的归属(分到哪个类别)及可能性(分到某一类别的概率)进行评估. (二),SparkMLlib逻辑回归应用

Spark MLlib Logistic Regression逻辑回归算法

1.1 逻辑回归算法 1.1.1 基础理论 logistic回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,即先把特征线性求和,然后使用函数g(z)将最为假设函数来预测.g(z)可以将连续值映射到0和1上. 它与线性回归的不同点在于:为了将线性回归输出的很大范围的数,例如从负无穷到正无穷,压缩到0和1之间,这样的输出值表达为"可能性"才能说服广大民众.当然了,把大值压缩到这个范围还有个很好的好处,就是可以消除特别冒尖的变量的影响. Logistic函数(或称为Sigm

逻辑回归算法实现_基于R语言

逻辑回归(Logistic Regression)模型和线性回归非常相似,可以说就是在逻辑回归的基础上加上了一步逻辑转换,也就是因为这个转换,使逻辑回归模型非常适用于二分类问题的概率预测.本文主要详述逻辑回归模型的基础以及逻辑回归模型的R语言实现. 一.逻辑回归模型原理 首先要讲一下线性回归在预测分类事件中的缺点:线性回归模型的泛化能力很差,如果训练集存在噪点,会导致模型的结果特别差,不同样本建立起来的模型分割点不同:下图中根据年龄预测是否成年的分类问题,斜线就是根据训练集拟合出来的线性回归模型

机器学习入门-逻辑回归算法

梯度下降: 对theta1, theta2, theta3 分别求最快梯度下降的方向,然后根据给定的学习率,进行theta1, theta2, theta3的参数跟新 假定目标函数 J(theta) = 1/2m * np.sum(h(theta) - y)^2 / len(X) 梯度下降的策略分为3种, 批量梯度下降: 每次迭代输入全部的数据, 效果好,但耗时 随机梯度下降: 每次输入一个样本,时间快,迭代效果差 小批量梯度下降:每次输入部分数据,效果好,时间适中,一般都是16, 32, 64