Numpy-np.random.normal()正态分布

X ~ :随机变量X的取值和其对应的概率值P(X = ) 满足正态分布(高斯函数)

  • 很多随机现象可以用正态分布描述或者近似描述
  • 某些概率分布可以用正态分布近似计算

正态分布(又称高斯分布)的概率密度函数

numpy中

numpy.random.normal(loc=0.0, scale=1.0, size=None)

参数的意义为:

  loc:float

  概率分布的均值,对应着整个分布的中心center

  scale:float

  概率分布的标准差,对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高

  size:int or tuple of ints

  输出的shape,默认为None,只输出一个值

  我们更经常会用到np.random.randn(size)所谓标准正态分布(μ=0, σ=1),对应于np.random.normal(loc=0, scale=1, size)

原文地址:https://www.cnblogs.com/cpg123/p/11779117.html

时间: 2024-10-08 19:20:56

Numpy-np.random.normal()正态分布的相关文章

NP:建立可视化输入的二次函数数据点集np.linspace+np.random.shuffle+np.random.normal

import numpy as np import matplotlib.pyplot as plt def fix_seed(seed=1): #重复观看一样东西 # reproducible np.random.seed(seed) # make up data建立数据 fix_seed(1) x_data = np.linspace(-7, 10, 2500)[:, np.newaxis] #水平轴-7~10 np.random.shuffle(x_data) noise = np.ran

numpy的random模块

[说明] 翻译自官网的文档. 随机抽样 (numpy.random) 简单的随机数据 rand(d0, d1, ..., dn) 随机值 >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random randn(d0, d1, ..., dn) 返回一个样本,具有标准正态分布.

numpy之random学习

在机器学习中参数初始化需要进行随机生成,同时样本也需要随机生成,或者遵从一定规则随机生成,所以对随机生成的使用显得格外重要. 有的是生成随机数,有的是随机序列,有点是从随机序列中选择元素等等. 简单的随机数据 rand(d0, d1, ..., dn) 随机值 >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049,

【转】np.random.random()函数 参数用法以及numpy.random系列函数大全

转自:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.random((1000, 20)) 上面这个就代表生成1000行 20列的浮点数,浮点数都是从0-1中随机. 2.numpy.random.rand()函数用法 numpy.random.rand(d0, d1, ..., dn): 生成一个[0,1)之间的随机浮点数或N维浮点数组. 3.numpy.random.randn()函

numpy中np.random.seed()的详细用法

在进行机器学习和深度学习中,我们会经常用到np.random.seed(),利用随机数种子,使得每次生成的随机数相同. numpy.randn.randn(d0,d1,...,dn) randn函数根据给定维度生成大概率在(-2.58~+2.58)之间的数据 randn函数返回一个或者一组样本,具有标准正态分布 dn表示每个维度 返回值为指定维度的array import numpy as np a = np.random.randn(2,4) #4*2矩阵 print(a) b = np.ra

numpy:np.random.seed()

np.random.seed()函数可以保证生成的随机数具有可预测性. 可以使多次生成的随机数相同 1.如果使用相同的seed( )值,则每次生成的随即数都相同: 2.如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同. 在机器学习和深度学习中,如果要保证部分参数(比如W权重参数)的随机初始化值相同,可以采用这种方式来实现. 原文地址:https://www.cnblogs.com/lemon-rain/p/9830503.html

为什么你用不好Numpy的random函数?

为什么你用不好Numpy的random函数? 在python数据分析的学习和应用过程中,经常需要用到numpy的随机函数,由于随机函数random的功能比较多,经常会混淆或记不住,下面我们一起来汇总学习下. import numpy as np 1 numpy.random.rand() numpy.random.rand(d0,d1,…,dn) rand函数根据给定维度生成[0,1)之间的数据,包含0,不包含1 dn表格每个维度 返回值为指定维度的array np.random.rand(4,

转---Python——numpy random类

numpy中利用random类获取随机数. numpy.random.random() 生成随机浮点数 默认为生成一个随机的浮点数,范围是在0.0~1.0之间,也可以通过参数size设置返回数据的size; 生成一个随机的浮点数: import numpy n = numpy.random.random() print n 1 2 3 输出: 0.429489486421 1 设置参数size: import numpy n = numpy.random.random(size=(3, 2))

np.random.multivariate_normal方法浅析

从多元正态分布中抽取随机样本. 多元正态分布,多正态分布或高斯分布是一维正态分布向更高维度的推广.这种分布由其均值和协方差矩阵来确定.这些参数类似于一维正态分布的平均值(平均值或“中心”)和方差(标准差或“宽度”,平方). np.random.multivariate_normal方法用于根据实际情况生成一个多元正态分布矩阵,其在Python3中的定义如下: def multivariate_normal(mean, cov, size=None, check_valid=None, tol=N