JVM参数配置详解-包含JDK1.8

堆大小设置
    JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
    典型设置:
        java -Xmx3550m -Xms3550m -Xmn2g -Xss128k
        -Xmx3550m:设置JVM最大可用内存为3550M。
        -Xms3550m:设置JVM促使内存为3550m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。
        -Xmn2g:设置年轻代大小为2G。整个JVM内存大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。
        -Xss128k:设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。
        java -Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4 -XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0
        -XX:NewRatio=4:设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5
        -XX:SurvivorRatio=4:设置年轻代中Eden区与Survivor区的大小比值。设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6
        -XX:MaxPermSize=16m:设置持久代大小为16m。
        -XX:MaxTenuringThreshold=0:设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活时间,增加在年轻代即被回收的概论。
        JDK1.8取消了PermGen,取而代之的是Metaspace,所以PermSize和MaxPermSize参数失效,取而代之的是-XX:MetaspaceSize -XX:MaxMetaspaceSize

-XX:MetaspaceSize=64m -XX:MaxMetaspaceSize=128m

回收器选择
    JVM给了三种选择:串行收集器、并行收集器、并发收集器,但是串行收集器只适用于小数据量的情况,所以这里的选择主要针对并行收集器和并发收集器。默认情况下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在启动时加入相应参数。JDK5.0以后,JVM会根据当前系统配置进行判断。
        吞吐量优先的并行收集器
        如上文所述,并行收集器主要以到达一定的吞吐量为目标,适用于科学技术和后台处理等。
        典型配置:
            java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20
            -XX:+UseParallelGC:选择垃圾收集器为并行收集器。此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。
            -XX:ParallelGCThreads=20:配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。
            java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC
            -XX:+UseParallelOldGC:配置年老代垃圾收集方式为并行收集。JDK6.0支持对年老代并行收集。
            java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC  -XX:MaxGCPauseMillis=100
            -XX:MaxGCPauseMillis=100:设置每次年轻代垃圾回收的最长时间,如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值。
            java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC  -XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy
            -XX:+UseAdaptiveSizePolicy:设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开。
        响应时间优先的并发收集器
        如上文所述,并发收集器主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。
        典型配置:
            java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC
            -XX:+UseConcMarkSweepGC:设置年老代为并发收集。测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此时年轻代大小最好用-Xmn设置。
            -XX:+UseParNewGC:设置年轻代为并行收集。可与CMS收集同时使用。JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值。
            java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection
            -XX:CMSFullGCsBeforeCompaction:由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生“碎片”,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。
            -XX:+UseCMSCompactAtFullCollection:打开对年老代的压缩。可能会影响性能,但是可以消除碎片
    辅助信息
    JVM提供了大量命令行参数,打印信息,供调试使用。主要有以下一些:
        -XX:+PrintGC
        输出形式:[GC 118250K->113543K(130112K), 0.0094143 secs]

[Full GC 121376K->10414K(130112K), 0.0650971 secs]
        -XX:+PrintGCDetails
        输出形式:[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs]

[GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]
        -XX:+PrintGCTimeStamps -XX:+PrintGC:PrintGCTimeStamps可与上面两个混合使用
        输出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]
        -XX:+PrintGCApplicationConcurrentTime:打印每次垃圾回收前,程序未中断的执行时间。可与上面混合使用
        输出形式:Application time: 0.5291524 seconds
        -XX:+PrintGCApplicationStoppedTime:打印垃圾回收期间程序暂停的时间。可与上面混合使用
        输出形式:Total time for which application threads were stopped: 0.0468229 seconds
        -XX:PrintHeapAtGC:打印GC前后的详细堆栈信息
        输出形式:
        34.702: [GC {Heap before gc invocations=7:
         def new generation   total 55296K, used 52568K [0x1ebd0000, 0x227d0000, 0x227d0000)
        eden space 49152K,  99% used [0x1ebd0000, 0x21bce430, 0x21bd0000)
        from space 6144K,  55% used [0x221d0000, 0x22527e10, 0x227d0000)
          to   space 6144K,   0% used [0x21bd0000, 0x21bd0000, 0x221d0000)
         tenured generation   total 69632K, used 2696K [0x227d0000, 0x26bd0000, 0x26bd0000)
        the space 69632K,   3% used [0x227d0000, 0x22a720f8, 0x22a72200, 0x26bd0000)
         compacting perm gen  total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
           the space 8192K,  35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
            ro space 8192K,  66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
            rw space 12288K,  46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
        34.735: [DefNew: 52568K->3433K(55296K), 0.0072126 secs] 55264K->6615K(124928K)Heap after gc invocations=8:
         def new generation   total 55296K, used 3433K [0x1ebd0000, 0x227d0000, 0x227d0000)
        eden space 49152K,   0% used [0x1ebd0000, 0x1ebd0000, 0x21bd0000)
          from space 6144K,  55% used [0x21bd0000, 0x21f2a5e8, 0x221d0000)
          to   space 6144K,   0% used [0x221d0000, 0x221d0000, 0x227d0000)
         tenured generation   total 69632K, used 3182K [0x227d0000, 0x26bd0000, 0x26bd0000)
        the space 69632K,   4% used [0x227d0000, 0x22aeb958, 0x22aeba00, 0x26bd0000)
         compacting perm gen  total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
           the space 8192K,  35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
            ro space 8192K,  66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
            rw space 12288K,  46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
        }
        , 0.0757599 secs]
        -Xloggc:filename:与上面几个配合使用,把相关日志信息记录到文件以便分析。
    常见配置汇总
        堆设置
            -Xms:初始堆大小
            -Xmx:最大堆大小
            -XX:NewSize=n:设置年轻代大小
            -XX:NewRatio=n:设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4
            -XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5
            -XX:MaxPermSize=n:设置持久代大小
        收集器设置
            -XX:+UseSerialGC:设置串行收集器
            -XX:+UseParallelGC:设置并行收集器
            -XX:+UseParalledlOldGC:设置并行年老代收集器
            -XX:+UseConcMarkSweepGC:设置并发收集器
        垃圾回收统计信息
            -XX:+PrintGC
            -XX:+PrintGCDetails
            -XX:+PrintGCTimeStamps
            -Xloggc:filename
        并行收集器设置
            -XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。
            -XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间
            -XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
        并发收集器设置
            -XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。
            -XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。

四、调优总结

年轻代大小选择
        响应时间优先的应用:尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择)。在此种情况下,年轻代收集发生的频率也是最小的。同时,减少到达年老代的对象。
        吞吐量优先的应用:尽可能的设置大,可能到达Gbit的程度。因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用。
    年老代大小选择
        响应时间优先的应用:年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率和会话持续时间等一些参数。如果堆设置小了,可以会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:
            并发垃圾收集信息
            持久代并发收集次数
            传统GC信息
            花在年轻代和年老代回收上的时间比例
        减少年轻代和年老代花费的时间,一般会提高应用的效率
        吞吐量优先的应用:一般吞吐量优先的应用都有一个很大的年轻代和一个较小的年老代。原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代尽存放长期存活对象。
    较小堆引起的碎片问题
    因为年老代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,他会把相邻的空间进行合并,这样可以分配给较大的对象。但是,当堆空间较小时,运行一段时间以后,就会出现“碎片”,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回收。如果出现“碎片”,可能需要进行如下配置:
        -XX:+UseCMSCompactAtFullCollection:使用并发收集器时,开启对年老代的压缩。
        -XX:CMSFullGCsBeforeCompaction=0:上面配置开启的情况下,这里设置多少次Full GC后,对年老代进行压缩

3

原文地址:https://www.cnblogs.com/halberts/p/11877769.html

时间: 2024-10-08 20:04:37

JVM参数配置详解-包含JDK1.8的相关文章

JVM参数配置详解

1. JVM中的年轻代,年老代和持久代区别与联系 JVM中的GC算法采用的是分代收集的策略,即将内存分为几个区域,将不同生命周期的对象放在不同区域里.如下所示: (1)在GC收集的时候,频繁收集生命周期短的区域(年轻代): (2)比较少的收集生命周期比较长的区域(年老代): (3)基本不收集的永久区(持久代). 年轻代分为1个Eden区和2个Survivor区,新建对象都保存在Survivor区中.当Eden区满则进行Minor GC,将Eden区和一个Survivor区清理到年老代中.这时不能

linux串口编程参数配置详解

1.linux串口编程需要的头文件 #include <stdio.h>         //标准输入输出定义 #include <stdlib.h>        //标准函数库定义 #include <unistd.h>       //Unix标准函数定义 #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h>          //文件控制定义 #incl

nginx一些参数配置详解

nginx的配置:    正常运行的必备配置:       1.user username [groupname];           指定运行worker进程的用户和组       2.pid /path/to/pidfile_name nginx的pid文件 3.worker_rlimit_nofile #;            一个worker进程所能够打开的最大文件句柄数:       4.worker_rlimit_sigpending #;            设定每个用户能够

Spark 性能相关参数配置详解-shuffle篇

作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 在Spark的官方文档http://spark.apache.org/docs/latest/configuration.html 中提供了这些可配置参数中相当大一部分的说明. 但是文档的更新总是落后于代码的开发的, 还有一些配置参数没有来得及被添加到

logback 常用参数配置详解

logback 常用配置详解(二) <appender> <appender>: <appender>是<configuration>的子节点,是负责写日志的组件. <appender>有两个必要属性name和class.name指定appender名称,class指定appender的全限定名. 1.ConsoleAppender: 把日志添加到控制台,有以下子节点: <encoder>:对日志进行格式化.(具体参数稍后讲解 ) &

JVM内存配置详解(转)

前段时间在一个项目的性能测试中又发生了一次OOM(Out of swap sapce),情形和以前网店版的那次差不多,比上次更奇怪的是,此次搞了几天之后啥都没调整系统就自动好了,死活没法再重现之前的OOM了!问题虽然蹊跷,但也趁此机会再次对JVM堆模型.GC垃圾算法等进行了一次系统梳理: 基本概念 堆/Heap JVM管理的内存叫堆:在32Bit操作系统上有4G的限制,一般来说Windows下为2G,而Linux 下为3G:64Bit的就没有这个限制. JVM初始分配的内存由-Xms指定,默认是

TCP/IP 参数配置详解

了解LINUX TCP/IP的参数配置是网络性能调优的前提,但是要清楚的记得这几十个参数也不容易,为了方便下次查看,所以查找了linux的manual手册和网上的资料.主要列出了"/proc/sys/net/ipv4"下面的参数. 1.IP 参数 ●ip_always_defrag: 在LINUX早期的版本中出现,现在已经没有了,就不作说明了. ●ip_autoconfig:这个没有文档说明. ●ip_default_ttl (整数; 默认值:64; since Linux 2.2):

dubbo 参数配置详解

前提:前几天在查询接口超时时,查看日志时,发现某个接口调用了很多次,最终发现是因为dubbo的重试次数,导致接口超时时,会重试多次: 一.dubbo常用配置 <dubbo:service/> 服务配置,用于暴露一个服务,定义服务的元信息,一个服务可以用多个协议暴露,一个服务也可以注册到多个注册中心. <dubbo:service ref="demoService" interface="com.unj.dubbotest.provider.DemoServi

Spark 性能相关参数配置详解-任务调度篇

随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化. 由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便于更新内容 schedule调度相关 调度相关的参数设置,大多数内容都很直白,其实无须过多的额外解释,不过基于这些参数的常用性(大概会是你针对自己的