Java并发编程系列-(3) 原子操作与CAS

3. 原子操作与CAS

3.1 原子操作

所谓原子操作是指不会被线程调度机制打断的操作;这种操作一旦开始,就一直运行到结束,中间不会有任何context switch,也就是切换到另一个线程。

为了实现原子操作,Java中可以通过synchronized关键字将函数或者代码块包围,以实现操作的原子性。但是synchronized关键字有一些很显著的问题:

1、synchronized是基于阻塞锁的机制,如果被阻塞的线程优先级很高,可能很长时间其他线程都没有机会运行;
2、拿到锁的线程一直不释放锁,可能导致其他线程一直等待;
3、线程数量很多时,可能带来大量的竞争,消耗cpu,同时带来死锁或者其他安全。

像synchronized这种独占锁属于悲观锁,它是在假设一定会发生冲突的,那么加锁恰好有用,除此之外,还有乐观锁,乐观锁的含义就是假设没有发生冲突,那么我正好可以进行某项操作,如果要是发生冲突呢,那我就重试直到成功,乐观锁最常见的就是CAS。

JAVA内部在实现原子操作的类时都应用到了CAS。

3.2 CAS

CAS是CompareAndSwap的缩写,即比较并替换。CAS需要有3个操作数:内存地址V,旧的预期值A,即将要更新的目标值B。

CAS指令执行时,当且仅当内存地址V的值与预期值A相等时,将内存地址V的值修改为B,否则就什么都不做。整个比较并替换的操作是一个原子操作,大多数现代处理器都支持CAS指令。

JDK中关于原子操作的类有,

  • 更新基本类型类:AtomicBoolean,AtomicInteger,AtomicLong,AtomicReference
  • 更新数组类:AtomicIntegerArray,AtomicLongArray,AtomicReferenceArray
  • 更新引用类型:AtomicReference,AtomicMarkableReference,AtomicStampedReference
  • 原子更新字段类: AtomicReferenceFieldUpdater,AtomicIntegerFieldUpdater,AtomicLongFieldUpdater

下面例子为AtomicInteger的基本用法,

public class UseAtomicInt {

    static AtomicInteger ai = new AtomicInteger(10);

    public static void main(String[] args) {
        System.out.println(ai.getAndIncrement());//10--->11
        System.out.println(ai.incrementAndGet());//11--->12--->out
        System.out.println(ai.get());
    }
}

深入getAndIncrement的实现可以发现,内部调用了CAS进行value的更新,

   /**
     * Atomically adds the given value to the current value of a field
     * or array element within the given object {@code o}
     * at the given {@code offset}.
     *
     * @param o object/array to update the field/element in
     * @param offset field/element offset
     * @param delta the value to add
     * @return the previous value
     * @since 1.8
     */
    @HotSpotIntrinsicCandidate
    public final int getAndAddInt(Object o, long offset, int delta) {
        int v;
        do {
            v = getIntVolatile(o, offset);
        } while (!weakCompareAndSetInt(o, offset, v, v + delta));
        return v;
    }

CAS在底层通过JNI调用系统的Atomic::cmpxchg方法,来进行value的比较与更新。

对于CAS的实现,这依赖于CPU提供的特定指令,具体根据体系结构的不同还存在着明显区别。比如,x86 CPU 提供 cmpxchg 指令;而在精简指令集的体系架构中,则通常是靠一对儿指令(如“load and reserve”和“store conditional”)实现的,在大多数处理器上 CAS 都是个非常轻量级的操作,这也是其优势所在。

3.3 CAS的问题

CAS虽然很高效的解决了原子操作问题,但是CAS仍然存在三大问题。

  • ABA问题

什么是ABA问题?ABA问题怎么解决?如果内存地址V初次读取的值是A,并且在准备赋值的时候检查到它的值仍然为A,那我们就能说它的值没有被其他线程改变过了吗?如果在这段期间它的值曾经被改成了B,后来又被改回为A,那CAS操作就会误认为它从来没有被改变过。这个漏洞称为CAS操作的“ABA”问题。
Java并发包为了解决这个问题,提供了一个带有标记的原子引用类“AtomicStampedReference”,它可以通过控制变量值的版本来保证CAS的正确性。因此,在使用CAS前要考虑清楚“ABA”问题是否会影响程序并发的正确性,如果需要解决ABA问题,改用传统的互斥同步可能会比原子类更高效。

  • 开销问题

循环时间长开销很大:我们可以看到getAndAddInt方法执行时,如果CAS失败,会一直进行尝试。如果CAS长时间一直不成功,可能会给CPU带来很大的开销。

  • 只能保证一个共享变量的原子操作

只能保证一个共享变量的原子操作:当对一个共享变量执行操作时,我们可以使用循环CAS的方式来保证原子操作,但是对多个共享变量操作时,循环CAS就无法保证操作的原子性,这个时候就可以用锁来保证原子性。



本文由『后端精进之路』原创,首发于博客 http://teckee.github.io/ , 转载请注明出处

搜索『后端精进之路』关注公众号,立刻获取最新文章和价值2000元的BATJ精品面试课程

原文地址:https://www.cnblogs.com/way2backend/p/12019872.html

时间: 2024-10-11 21:31:15

Java并发编程系列-(3) 原子操作与CAS的相关文章

Java并发编程系列(一)-线程的基本使用

最近在学习java并发编程基础.一切从简,以能理解概念为主. 并发编程肯定绕不过线程.这是最基础的. 那么就从在java中,如何使用线程开始. 继承Thread类 继承Thread类,重写run方法,new出对象,调用start方法. 在新启的线程里运行的就是重写的run方法. 1 /** 2 * 集成Thread类 实现run() 3 */ 4 public class C1 extends Thread { 5 6 @Override 7 public void run() { 8 try

java并发编程系列一、多线程

1.什么是线程 线程是CPU独立运行和独立调度的基本单位: 2.什么是进程 进程是资源分配的基本单位: 3.线程的状态 新创建   线程被创建,但是没有调用start方法 可运行(RUNNABLE)  运行状态,由cpu决定是不是正在运行 被阻塞(BLOCKING)  阻塞,线程被阻塞于锁 等待/计时等待(WAITING) 等待某些条件成熟 被终止  线程执行完毕 线程的生命周期及五种基本状态: 4.线程的优先级 成员变量priority控制优先级,范围1-10之间,数字越高优先级越高,缺省为5

Java并发编程系列 concurrent包概览

从JDK 1.5开始,增加了java.util.concurrent包,concurrent包的引入大大简化了多线程程序的开发. 查看JDK的API可以发现,java.util.concurrent包分成了三个部分,分别是java.util.concurrent.java.util.concurrent.atomic和java.util.concurrent.lock. >>Atomic包 API中的说明是“A small toolkit of classes that support loc

Java并发编程系列-(5) Java并发容器

5 并发容器 5.1 Hashtable.HashMap.TreeMap.HashSet.LinkedHashMap 在介绍并发容器之前,先分析下普通的容器,以及相应的实现,方便后续的对比. Hashtable.HashMap.TreeMap 都是最常见的一些 Map 实现,是以键值对的形式存储和操作数据的容器类型. Hashtable 是早期 Java 类库提供的一个哈希表实现,本身是同步的,不支持 null 键和值,由于同步导致的性能开销,所以已经很少被推荐使用. HashMap 是应用更加

Java并发编程系列-(8) JMM和底层实现原理

8. JMM和底层实现原理 8.1 线程间的通信与同步 线程之间的通信 线程的通信是指线程之间以何种机制来交换信息.在编程中,线程之间的通信机制有两种,共享内存和消息传递. 在共享内存的并发模型里,线程之间共享程序的公共状态,线程之间通过写-读内存中的公共状态来隐式进行通信,典型的共享内存通信方式就是通过共享对象进行通信. 在消息传递的并发模型里,线程之间没有公共状态,线程之间必须通过明确的发送消息来显式进行通信,在java中典型的消息传递方式就是wait()和notify(). 线程之间的同步

Java并发编程系列之二十五:线程池

线程池简介 在之前介绍Executor框架的文章中对线程池有一个初步的认识,实际上线程池这种设计思想在Java中很普遍,比如JVM中常量池,以及Web开发使用到的数据库连接池.这些池本质上还是Java中的对象池,因为池中存放的都是Java对象.回到线程池,几乎所有需要异步或者执行并发任务的程序都可以使用到线程池.使用线程池带来的好处主要包括以下几个方面: 一,提高资源利用率.由于线程池中的线程使可以重复利用的,所以达到了循环利用的目的 二,提高响应速度.由于线程的创建也是需要开销的,如果请求到来

Java并发编程系列之十六:Lock锁

Lock锁简介 Lock锁机制是JDK 5之后新增的锁机制,不同于内置锁,Lock锁必须显式声明,并在合适的位置释放锁.Lock是一个接口,其由三个具体的实现:ReentrantLock.ReetrantReadWriteLock.ReadLock 和 ReetrantReadWriteLock.WriteLock,即重入锁.读锁和写锁.增加Lock机制主要是因为内置锁存在一些功能上局限性.比如无法中断一个正在等待获取锁的线程,无法在等待一个锁的时候无限等待下去.内置锁必须在释放锁的代码块中释放

Java并发编程系列之二十八:CompletionService

CompletionService简介 CompletionService与ExecutorService类似都可以用来执行线程池的任务,ExecutorService继承了Executor接口,而CompletionService则是一个接口,那么为什么CompletionService不直接继承Executor接口呢?主要是Executor的特性决定的,Executor框架不能完全保证任务执行的异步性,那就是如果需要实现任务(task)的异步性,只要为每个task创建一个线程就实现了任务的异

Java并发编程系列-(2) 线程的并发工具类

2.线程的并发工具类 2.1 Fork-Join JDK 7中引入了fork-join框架,专门来解决计算密集型的任务.可以将一个大任务,拆分成若干个小任务,如下图所示: Fork-Join框架利用了分而治之的思想:什么是分而治之?规模为N的问题,N<阈值,直接解决,N>阈值,将N分解为K个小规模子问题,子问题互相对立,与原问题形式相同,将子问题的解合并得到原问题的解. 具体使用中,需要向ForkJoinPool线程池提交一个ForkJoinTask任务.ForkJoinTask任务有两个重要