csp-s模拟测试56(10.2)Merchant「二分」·Equation「树状数组」

又死了......
T1 Merchant



因为每个集合都可以写成一次函数的形式,所以假设是单调升的函数,那么随着t越大就越佳

而单调减的函数,随着t的增大结果越小,所以不是单调的???

但是我们的单调只需凭借t时刻的sum值是否大于S即可

如果某个单减的集合符合情况,那么他在t==0时就符合情况

如果不符合,那么他就不会作出贡献

所以可以二分

T2 Equation



一开始以为是高斯消元???

当然不是.....

把每个xi均用x1表示,那么我们发现,对于深度奇偶不同的点,他的表示方式是不同的,分两个统计就行了,

查询是O(1)的,只是分一些情况

但是修改,可以考虑用树状数组维护差分,差分是在DFS序上进行的,在L处-,R处+,最后维护后缀,

两个树状数组会被卡,所以用一个表示奇度点,偶度就是相反数。

T3



咕了.................

原文地址:https://www.cnblogs.com/Wwb123/p/11619449.html

时间: 2024-10-26 21:59:40

csp-s模拟测试56(10.2)Merchant「二分」·Equation「树状数组」的相关文章

XJOI NOIP2015模拟赛Day1 T2 ctps bitset优化 或 排序+cdq分治+树状数组+平衡树

题意: 4维空间中有1个点集A,|A|=n,用(a,b,c,d)表示每个点. 共有m个询问,每次询问输入一个点(a,b,c,d),求最大的S,其中S={p|p∈A且ap<=a,bp<=b,cp<=c,dp<=d},输出|S| 输入格式: 第一行n 接下来n行有n个4维点对 第n+2行有一个数m 再接下来m行每行有一个四维点对,表示每个询问 输出格式: 对于每个询问输出一个数 **方法:**bitset优化 或 排序+cdq分治+树状数组+平衡树 解析: 神题,考场不会,暴力骗40,

[考试反思]1002csp-s模拟测试56:凌乱

放假回来状态回升??(玩够了-但是稍困) T1打的不完全对,但是过掉了.很快的想到了二分吧喇叭啦.. 然后T2也挺快想出来了但是挂细节没发现,考试快结束的时候才发现出锅了. 改了过来是正解,但是出题人无良卡了线段树强制树状数组,T了一个子任务,卡常到飞起. T3暴力没什么问题. 卡常是一种习惯.要注意题目数据范围观察是否卡常. T1: 所有的决策都是一条一次函数. 分两类,斜率正或斜率非负. 如果第二类的直线里有在T=0时符合要求的,那么答案就是0,所以check(0)一下. 如果非负的直线都在

【10.22校内测试】【二分】【二分图】【很像莫队的乱搞/树状数组】

Solution 谁能想到这道题卡读入??还卡了70pts??? 二分+$n^2$check就行了 Code #include<bits/stdc++.h> using namespace std; int n, m; int sum[2005][2005]; void read(int &x) { x = 0; char ch = getchar(); while(ch > '9' || ch < '0') ch = getchar(); while(ch >= '

[CSP-S模拟测试]:Equation(数学+树状数组)

题目描述 有一棵$n$个点的以$1$为根的树,以及$n$个整数变量$x_i$.树上$i$的父亲是$f_i$,每条边$(i,f_i)$有一个权值$w_i$,表示一个方程$x_i+x_{f_i}=w_i$,这$n−1$个方程构成了一个方程组.现在给出$q$个操作,有两种类型:$\bullet 1\ u\ v\ s$,表示询问加上$x_u+x_v=s$这个方程后,整个方程组的解的情况.具体来说,如果方程有唯一解,输出此时$x_1$的值:如果有无限多个解,输出$inf$:如果无解,输出$none$.注意

[CSP-S模拟测试]:Rectangle(模拟+树状数组)

题目描述 平面上有$n$个点,第$i$个点的坐标为$X_i,Y_i$.对于其中的一个非空点集$S$,定义$f(S)$为一个最小矩形,满足:$\bullet$覆盖$S$中所有的点(在边界上也算覆盖):$\bullet$边与坐标轴平行.求所有不同的$f(S)$的面积和对$10^9+7$取模的结果.两个矩形被认为是不同的,当且仅当它们顶点坐标不同. 输入格式 从文件$rectangle.in$中读入数据.第一行一个整数$n$.接下来$n$行,每行两个整数$X_i,Y_i$. 输出格式 输出到文件$re

[CSP-S模拟测试]:天才绅士少女助手克里斯蒂娜(数学+树状数组)

题目描述 红莉栖想要弄清楚楼下天王寺大叔的显像管电视对“电话微波炉(暂定)”的影响. 选取显像管的任意一个平面,一开始平面内有个$n$电子,初始速度分别为$v_i$,定义飘升系数为$$\sum \limits_{1\leqslant i<j\leqslant n}|v_i\times v_j|^2$$ 由于电视会遭到大叔不同程度的暴击,电子的速度常常会发生变化.也就是说,有两种类型的操作: $\bullet 1\ p\ x\ y$将$v_p$改为$(x,y)$ $\bullet 2\ l\ r$

[CSP-S模拟测试]:小P的单调数列(树状数组+DP)

题目描述 小$P$最近喜欢上了单调数列,他觉得单调的数列具有非常多优美的性质.经过小$P$复杂的数学推导,他计算出了一个单调增数列的艺术价值等于该数列中所有书的总和.并且以这个为基础,小$P$还可以求出任意一个数列的艺术价值,它等于将这个数列顺次划分若干个极长单调区间(相邻两个单调区间的单调性必须不相同)后,每个单调区间中元素总和的平均值.比如对于数列$3\ 7\ 9\ 2\ 4\ 5$,它将被划分为$[3\ 7\ 9]\ [2]\ [4\ 5]$,其艺术价值为$\frac{19+2+9}{3}

Hdu 3887树状数组+模拟栈

题目链接 Counting Offspring Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1757    Accepted Submission(s): 582 Problem Description You are given a tree, it’s root is p, and the node is numbered fr

Educational Codeforces Round 10 D. Nested Segments (树状数组)

题目链接:http://codeforces.com/problemset/problem/652/D 给你n个不同的区间,L或者R不会出现相同的数字,问你每一个区间包含多少个区间. 我是先把每个区间看作整体,按照R从小到大排序.然后从最小的R开始枚举每个区间,要是枚举到这个区间L的时候,计算之前枚举的区间有多少个Li在L之后,那么这些Li大于L的区间的数量就是答案.那我每次枚举的时候用树状数组add(L , 1) 说明在L这个位置上出现了区间,之后枚举的时候计算L之前的和,然后i - 1 -