keras 添加L2正则 和 dropout层

在某一层添加L2正则:

from keras import regularizer
model.add(layers.Dense(..., kernel_regularizer = regularizers(0.001),...))

在某一层之后添加dropout层:

model.add(layers.Dropout(0.5))

原文地址:https://www.cnblogs.com/rising-sun/p/11625963.html

时间: 2024-11-10 08:59:26

keras 添加L2正则 和 dropout层的相关文章

L1正则与L2正则

L1正则是权值的绝对值之和,重点在于可以稀疏化,使得部分权值等于零. L1正则的含义是 ∥w∥≤c,如下图就可以解释为什么会出现权值为零的情况. L1正则在梯度下降的时候不可以直接求导,在网上找到一种优化方法,不知是否可行 对于目标函数中包含加性的非平滑项并使用梯度下降求解的问题,如果可以使用proximal operator,则解法如下: 假设目标函数为 其中 可导,而 不可导.则每步迭代更新为 其中,如果 ,也就是题目中要求的L1范数正则化,则对应的 L2正则的重点在于防止过拟合,没有稀疏特

L1 正则 和 L2 正则的区别

L1,L2正则都可以看成是 条件限制,即 $\Vert w \Vert \leq c$ $\Vert w \Vert^2 \leq c$ 当w为2维向量时,可以看到,它们限定的取值范围如下图: 所以它们对模型的限定不同 而对于一般问题来说,L1 正则往往取到正方形的顶点,即会有很多分量为0,具有稀疏性,有特征选择的作用

【机器学习】--线性回归中L1正则和L2正则

一.前述 L1正则,L2正则的出现原因是为了推广模型的泛化能力.相当于一个惩罚系数. 二.原理 L1正则:Lasso Regression L2正则:Ridge Regression 总结: 经验值 MSE前系数为1 ,L1 , L2正则前面系数一般为0.4~0.5 更看重的是准确性. L2正则会整体的把w变小. L1正则会倾向于使得w要么取1,要么取0 ,稀疏矩阵 ,可以达到降维的角度. ElasticNet函数(把L1正则和L2正则联合一起): 总结: 1.默认情况下选用L2正则. 2.如若

caffe中关于(ReLU层,Dropout层,BatchNorm层,Scale层)输入输出层一致的问题

在卷积神经网络中.常见到的激活函数有Relu层 layer { name: "relu1" type: "ReLU" bottom: "pool1" top: "pool1" }其中可选参数为:negative_slope:默认为0. 对标准的ReLU函数进行变化,如果设置了这个值,那么数据为负数时,就不再设置为0,而是用原始数据乘以negative_slope relu层有个很大的特点:bottom(输入)和top(输出)一

大白话5分钟带你走进人工智能-第十四节过拟合解决手段L1和L2正则

                                                                                                  第十四节过拟合解决手段L1和L2正则 第十三节中,我们讲解了过拟合的情形,也就是过度的去拟合训练集上的结果了,反倒让你的模型太复杂.为了去解决这种现象,我们提出用L1,L2正则去解决这种问题. 怎么把正则应用进去?我们重新审视目标函数,以前我们可以理解目标函数和损失函数是一个东西.而有正则的含义之后,目

神经网络之dropout层

一:引言 因为在机器学习的一些模型中,如果模型的参数太多,而训练样本又太少的话,这样训练出来的模型很容易产生过拟合现象.在训练bp网络时经常遇到的一个问题,过拟合指的是模型在训练数据上损失函数比较小,预测准确率较高(如果通过画图来表示的话,就是拟合曲线比较尖,不平滑,泛化能力不好),但是在测试数据上损失函数比较大,预测准确率较低. 常用的防治过拟合的方法是在模型的损失函数中,需要对模型的参数进行"惩罚",这样的话这些参数就不会太大,而越小的参数说明模型越简单,越简单的模型则越不容易产生

caffe添加自己编写的Python层

由于Python的灵活性,我们在caffe中添加自己定义的层时使用python层会更加方便,开发速速也会比C++更快,现在我就在这儿简单说一下如何在caffe中添加自定义的python层(使用的原网络结构时Lenet结构): 首先在caffe->python文件夹中添加自己定义的层函数.py文件,比如我这里命名为MyPythonLayer.py,该层实现的功能是对输入数据加上一个数字,如下: 然后在/home/zf/caffe/examples/mnist/lenet_train_test.pr

L1与L2正则(转)

L0范数表示向量中非零元素的个数:NP问题,但可以用L1近似代替. L1范数表示向量中每个元素绝对值的和: L1范数的解通常是稀疏性的,倾向于选择数目较少的一些非常大的值或者数目较多的insignificant的小值. L1和L2的差别,为什么一个让绝对值最小,一个让平方最小,会有那么大的差别呢?我看到的有两种几何上直观的解析: 1)下降速度: 我们知道,L1和L2都是规则化的方式,我们将权值参数以L1或者L2的方式放到代价函数里面去.然后模型就会尝试去最小化这些权值参数.而这个最小化就像一个下

L2 正则详解及反向求导

1.欧氏距离  2.L2范数 3.l2正则化 1).作用 L2的作用是防止参数太大. 2).求导过程 Wij是参数矩阵 假设神经网络表达式如下 使用绝对值损失,对应的y'是true label 加入L2损失,损失函数变为如下 按照链式求导法则,损失L对W的导数如下: 新参数的更新如下: 同理可以对bias有L2损失. 原文地址:https://www.cnblogs.com/AntonioSu/p/12097906.html