表达式求值相关算法

实现对一个数学表达式的求值,例如:1+2*(3+4) 这个表达式的值为 15

这个问题主要要分为如下几个步骤:

  1. 语法分析: 将字符串表达式转化为数字和操作符的 token 数组,[‘1‘, ‘+‘, ‘2‘, ‘*‘, ‘(‘, ‘3‘, ‘+‘, ‘4‘, ‘)‘]
  2. 转逆波兰表达式: 将中缀表达式转后缀表达式,[‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘+‘, ‘*‘, ‘+‘]
  3. 逆波兰表达式求值: 15

逆波兰表达式转二叉树: 条件表达式中,二叉树的求值能提前返回,能比逆波兰表达式计算量更少

语法分析

def tokenizer(expr):
    l = len(expr)
    i = 0
    tokens = []
    while i < l:
        while expr[i] == ' ':
            i += 1
        if is_operator(expr[i]):
            if i + 1 == l:
                return None
            if expr[i] == '-':
                if tokens and (not is_operator(tokens[-1]) and not tokens[-1] == '('):
                    tokens.append(expr[i])
                    i += 1
                else:
                    j = i + 1
                    while j < l and not is_operator(expr[j]) and not is_parenthesis(expr[j]):
                        j += 1
                    tokens.append(expr[i:j])
                    i = j
            else:
                tokens.append(expr[i])
                i += 1
        elif is_parenthesis(expr[i]):
            tokens.append(expr[i])
            i += 1
        else:
            j = i
            while j < l and not is_operator(expr[j]) and not is_parenthesis(expr[j]):
                j += 1
            tokens.append(expr[i:j])
            i = j

    return tokens

转逆波兰表达式

准备一个栈来存储运算符和 "("

遍历中缀表达式

  1. 如果是操作数,直接输出
  2. 如果是 "(",直接入栈
  3. 如果是 ")",从栈中弹出元素输出直到遇到 "("
  4. 如果是运算符并且栈为空,直接入栈
  5. 如果是运算符并且栈不为空,从栈里弹出元素输出,直到栈顶优先级低于当前运算符或者遇到 "("

将栈里剩余的元素一次弹出输出

op_priority = {
    '+': 1,
    '-': 1,
    '*': 2,
    '/': 2,
    '%': 2,
    '^': 3,
}

def to_polish(tokens):
    polish = []
    stack = []
    for token in tokens:
        if is_operator(token):
            while stack and is_operator(stack[-1]) and op_priority[stack[-1]] >= op_priority[token]:
                polish.append(stack[-1])
                stack.pop()
            stack.append(token)
        elif token == '(':
            stack.append(token)
        elif token == ')':
            while stack and stack[-1] != '(':
                polish.append(stack[-1])
                stack.pop()
            if not stack:
                return None
            stack.pop()
        else:
            polish.append(token)
    while stack:
        polish.append(stack[-1])
        stack.pop()

    return polish

逆波兰表达式求值

准备一个栈用来存储中间结果

遍历逆波兰表达式

  1. 如果是操作数,直接入栈
  2. 如果是运算符,从栈顶取出运算符所需要的操作数个数,计算结果再次入栈

最后栈中只剩下一个元素,即最终结果

op_handler = {
    '+': lambda x, y: x+y,
    '-': lambda x, y: x-y,
    '*': lambda x, y: x*y,
    '/': lambda x, y: x/y,
    '%': lambda x, y: x % y,
    '^': lambda x, y: x**y,
}

def calculate(polish):
    stack = []
    for token in polish:
        if is_operator(token):
            y = stack[-1]
            stack.pop()
            x = stack[-1]
            stack.pop()
            stack.append(op_handler[token](x, y))
        else:
            stack.append(int(token))
    return stack[-1]

逆波兰表达式转二叉树

准备一个栈用来存储中间节点

遍历逆波兰表达式

  1. 如果是操作数,构造一个操作数节点入栈
  2. 如果是运算符,构造一个新的节点,从栈顶取两个元素作为左右节点,新节点入栈

最后栈中只剩下一个节点,即最终的 root 节点

class Node:
    def __init__(self, val, left=None, right=None):
        self.left = left
        self.right = right
        self.val = val

    def __str__(self):
        return str(self.left) + ", " + str(self.val) + ", " + str(self.right)

def to_binary_tree(polish):
    stack = []
    for token in polish:
        if is_operator(token):
            right = stack[-1]
            stack.pop()
            left = stack[-1]
            stack.pop()
            stack.append(Node(token, left, right))
        else:
            stack.append(Node(token))
    return stack[-1]

二叉树求值

递归求值即可

def calculate_binary_tree(node):
    if not is_operator(node.val):
        return int(node.val)
    return op_handler[node.val](calculate_binary_tree(node.left), calculate_binary_tree(node.right))

转载请注明出处
本文链接:https://tech.hatlonely.com/article/67

原文地址:https://www.cnblogs.com/hatlonely/p/12013298.html

时间: 2024-10-08 04:53:29

表达式求值相关算法的相关文章

表达式求值:从“加减”到“带括号的加减乘除”的实践过程

本文乃Siliphen原创,转载请注明出处:http://blog.csdn.net/stevenkylelee ● 为什么想做一个表达式求值的程序 最近有一个需求,策划想设置游戏关卡的某些数值,这个数值不是一个常量,而是根据关卡的某些环境数据套上一个计算表达式算出来的.这个需求无法用excel拖表预计算出,因为关卡的环境数据只有在游戏中才能产生,在excel制表时,这些都是未知的.作为程序员,我可以把计算表达式硬编码在代码中,但这个做法有缺陷,如果策划要修改计算表达式的话,只能通过我修改程序并

Python解析 算数表达式求值 栈的使用

使用Python实现一种算数表达式求值的算法,模拟这种使用栈的方式,这是由E.W.Dijkstra在20世纪60年代发明的一种非常简单的算法.代码模拟仅仅表现一种编程思想,代码的逻辑并不完全: if __name__ == "__main__": cal_str = input("请输入算数表达式(e.g.(((1+2)*(3+5))+2), 只适合简单的算数表达式):") num_stack = [] symbol_stack = [] for chr in ca

数据结构算法C语言实现(八)--- 3.2栈的应用举例:迷宫求解与表达式求值

一.简介 迷宫求解:类似图的DFS.具体的算法思路可以参考书上的50.51页,不过书上只说了粗略的算法,实现起来还是有很多细节需要注意.大多数只是给了个抽象的名字,甚至参数类型,返回值也没说的很清楚,所以很多需要自己揣摩.这也体现了算法和程序设计语言的特点,算法更侧重本质的描述,而任何编程语言都要照顾到实现的细节以及数据类型等语法方面的需求. 表达式求值: [编码中....] 二.头文件 迷宫求解: 1 //3_2_maze.h 2 /** 3 author:zhaoyu 4 email:[em

算法-表达式求值

今天在网上看到Dijkstra双栈算术表达式求值算法,可以用来实现计算器类型的app,以前很早的时候知道通过算术栈和数值栈搞定的,这次用OC通过数组实现了预期的效果,编程语言系统一般都内置了对算术表达式的处理,我们可以简易的模仿一下算术表达式处理机制,思想不变,主要是实现方式略有不同.算术表达式可能是一个数.或者是由一个左括号.一个算术表达式.一个运算符.另一个算术表达式和一个右括号组成的表达式.为了简化问题,这里定义的是未省略括号的算术表达式,它明确地说明了所有运算符的操作数,形式如下:(1+

表达式求值及转换算法

后缀表达式求值算法 stack operands;  //运算数栈 while(没到表达式尾) {     scanf("一个运算对象op");     if(op is 运算数)         operands.push(op);     else if(op is 运算符)     {         operand_right = operands.pop();         operand_left = operands.pop();         result = op

算法手记(2)Dijkstra双栈算术表达式求值算法

这两天看到的内容是关于栈和队列,在栈的模块发现了Dijkstra双栈算术表达式求值算法,可以用来实现计算器类型的app. 编程语言系统一般都内置了对算术表达式的处理,但是他们是如何在内部实现的呢?为了了解这个过程,我们可以自行搭建一套简易的算术表达式处理机制,这里就用到栈特性和本篇提到的Dijkstra算法. 概述:     算术表达式可能是一个数.或者是由一个左括号.一个算术表达式.一个运算符.另一个算术表达式和一个右括号组成的表达式.为了简化问题,这里定义的是未省略括号的算术表达式,它明确地

表达式求值算法、rpn、1470、1475、1477、1479

以下为表达式求值系列完整算法,借用C++语言,读者不妨对照下图表达式求值算法实例,仔细推敲. 1 /* 2 DATA:2015 1 30 3 From:13420228 4 */ 5 //测试数据: 6 // 4 7 // (0!+1)*2^(3!+4) - (5! - 67 - (8+9)) 8 // (1+2)*3+4*5 9 // 1.000 + 2 / 4 10 // ((1+2)*5+1)/(4^2)*3 11 #include <iostream> 12 #include <

【算法】E.W.Dijkstra算术表达式求值

算术表达式求值 我们要学习的一个栈的用例同时也是展示泛型的应用的一个经典例子,就是用来计算算术表达式的值,例如 ( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) ) 如果将4乘以5,把3加上2,取它们的积然后加上1,就得到了101.但Java系统是如何完成这些运算的呢?不需要研究Java系统的构造细节,我们也可以编写一个Java程序来解决这个问题.它接受一个输入字符串(表达式)并输出表达式的值.为了简化问题,首先来看一下这份明确的递归定义:算术表达式可能是一个数,或者是由一个左括号

使用E.W.D.Dijkstra设计算法实现算数表达式求值

要求:编程模拟(1+(2+3)*(4*5))的运算过程,重点在于如何解析由括号运算符和数字组成的字符串,并按照正确的顺序完成各种初级运算符的操作. 实现思路:用两个栈(LIFO)结构来实现(一个用于保存运算符,一个用于保存操作数) 将操作数压如操作数栈 将操作符压如操作符栈 忽略左括号 在遇到右括号时,弹出一个运算符,并弹出所需数量的操作数,并将操作符和操作数的运算结果压到操作数栈 1 package com.luochuang.demo.stdlib; 2 3 public class Eva