五大常用算法之五:分支限界法

一、基本描述

类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。但在一般情况下,分支限界法与回溯法的求解目标不同。回溯法的求解目标是找出T中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解

(1)分支搜索算法

所谓“分支”就是采用广度优先的策略,依次搜索E-结点的所有分支,也就是所有相邻结点,抛弃不满足约束条件的结点,其余结点加入活结点表。然后从表中选择一个结点作为下一个E-结点,继续搜索。

选择下一个E-结点的方式不同,则会有几种不同的分支搜索方式。

1)FIFO搜索

2)LIFO搜索

3)优先队列式搜索

(2)分支限界搜索算法

二、分支限界法的一般过程

由于求解目标不同,导致分支限界法与回溯法在解空间树T上的搜索方式也不相同。回溯法以深度优先的方式搜索解空间树T,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树T

分支限界法的搜索策略是:在扩展结点处,先生成其所有的儿子 结点(分支),然后再从当前的活结点表中选择下一个扩展对点。为了有效地选择下一扩展结点,以加速搜索的进程,在每一活结点处,计算一个函数值(限界), 并根据这些已计算出的函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间树上有最优解的分支推进,以便尽快地找出一个最优解。

分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。问题的解空间树是表示问题解空间的一棵有序树,常见的有子集树和排列树。 在搜索问题的解空间树时,分支限界法与回溯法对当前扩展结点所使用的扩展方式不同。在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成 为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,那些导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被子加入活结点表中。此后, 从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所求的解或活结点表为空时为止。

三、回溯法和分支限界法的一些区别

有一些问题其实无论用回溯法还是分支限界法都可以得到很好的解决,但是另外一些则不然。也许我们需要具体一些的分析——到底何时使用分支限界而何时使用回溯呢?

回溯法和分支限界法的一些区别:

方法对解空间树的搜索方式       存储结点的常用数据结构      结点存储特性常用应用

回溯法深度优先搜索堆栈活结点的所有可行子结点被遍历后才被从栈中弹出找出满足约束条件的所有解

分支限界法广度优先或最小消耗优先搜索队列、优先队列每个结点只有一次成为活结点的机会找出满足约束条件的一个解或特定意义下的最优解

时间: 2024-08-16 02:28:55

五大常用算法之五:分支限界法的相关文章

(转)五大常用算法之五:分支限界法

分支限界法 http://www.cnblogs.com/steven_oyj/archive/2010/05/22/1741378.html 一.基本描述 类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法.但在一般情况下,分支限界法与回溯法的求解目标不同.回溯法的求解目标是找出T中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解. (1)分支搜索算法 所谓“分支”就是采用广

五大常用算法

http://www.cnblogs.com/steven_oyj/archive/2010/05/22/1741370.html 分治算法 一.基本概念 在计算机科学中,分治法是一种很重要的算法.字面上的解释是"分而治之",就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题--直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并.这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)-- 任何一个可以用计

[转]五大常用算法:分治、动态规划、贪心、回溯和分支界定

Referred from http://blog.csdn.net/yapian8/article/details/28240973 分治算法 一.基本概念 在计算机科学中,分治法是一种很重要的算法.字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并.这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)…… 任何一个可以用计算机求

五大常用算法----贪心、动态规划、分支限界、分治算法和回溯算法

五大常用算法之一:贪心算法 所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解. 贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择.必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关. 所以对所采用的贪心策略一定要仔细分析其是否满足无后效性. 五大常用算法之二:动态规划算法 五大常用算法之三:分支限界算法

转:算法分析之 五大常用算法

算法分析之 五大常用算法 算法的复杂度 1.分治法 · 话说递归与HANOI塔 · 二分法求方程近似解 · 用C++实现合并排序 · 求最大值和最小值的分治算法 2.动态规划法 · 动态规划求0/1背包问题 · 最长公共子串问题的实现 · 用动态规划实现导弹拦截 · 最大化投资回报问题的实现 3.贪心算法 · 最小生成树之Prim算法 · 最小生成树之kruskal算法 · 贪心算法在背包中的应用 · 汽车加油问题之贪心算法 4.回溯法 · 回溯法之数的划分 · 回溯法求解运动员最佳配对问题 ·

【转载】算法设计之五大常用算法设计方法总结

转载自http://blog.csdn.net/zolalad/article/details/11393915 算法设计之五大常用算法设计方法总结 一.[分治法]  在计算机科学中,分治法是一种很重要的算法.字面上的解释是"分而治之",就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题--直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并.这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)--等.任

五大常用算法总结

最优化问题是计算机领域的一个很重要的问题,很多现实的问题本质上都是最优化问题,或者说都可以转化为最优化的问题.比如说怎么规划旅游线路最省钱,在指定的时间里做更多的事情等等,这些都是最优化问题.为了解决最优化问题,计算机界提出了各种算法. 其中有五大常用算法,它们是贪婪算法,动态规划算法,分治算法,回溯算法以及分支限界算法. 1) 贪婪算法 在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,它所做出的是在某种意义上的局部最优解.贪婪算法可以获取到问题的局部最优解,不

五大常用算法:分治、动态规划、贪心、回溯和分支界定

苹果的WWDC ,除了发布了os x 10.10 和IOS8 外,还推出了Swift.详细点击这里 代码总体风格有点像Java,也有点像javascript. 下面给出一些代码段(来自苹果官方手册): println("Hello, world") "var myVariable = 42 myVariable = 50 let myConstant = 42" 摘录来自: Apple Inc. "The Swift Programming Languag

五大常用算法 之 动态规划法

一.基本概念 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移.一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划. 动态规划是运筹学中用于求解决策过程中的最优化数学方法.当然,我们在这里关注的是作为一种算法设计技术,作为一种使用多阶段决策过程最优的通用方法.它是应用数学中用于解决某类最优化问题的重要工具. 如果问题是由交叠的子问题所构成,我们就可以用动态规划技术来解决它,一般来说,这样的子问题出现在对给定问题求解的递推关系中,这个递推关