CNN检测摘要

近一两年cnn在检测这块的发展突飞猛进,下面详细review下整个cnn检测领域模型的发展,以及在时间性能上的发展。

一、RCNN

流程:

Extract region(off model) + extract features(on model) + classifyregions according feature (svm or softmax)

性能:

精度:

二、SPP-NET

流程:

先做conv,再根据window提取特征。为什么rcnn不能也这么做呢?原因在于spp对不同尺度进行了max pool处理能更好的满足不同尺度window的特征表达。

性能:

核心思想在全图只做一次conv,这个和overfeat的思想一致

精度:

三、FAST-RCNN

流程:

引入了ROI层pooling,以及multi-task同时训练分类和检测框。

性能:

Compared to SPPnet, Fast R-CNN trains VGG163× faster, tests 10× faster, and is more accurate.

另外还额外提出了fc层SVD的思想

Vgg时间性能分析

精度:

The improvement of Fast R-CNN over SPPnetillustrates that even though Fast R-CNN uses single-scale training and testing,fine-tuning the conv layers provides a large improvement in mAP (from 63.1% to66.9%). Traditional R-CNN achieves a mAP of 66.0%. These
results arepragmatically valuable given how much faster and easier Fast R-CNN is to trainand test, which we discuss next.

四、FASTER-RCNN

流程:

在fast-rcnn的基础上,借鉴了FCN的思路,将proposal阶段转化成一个layer加进了网络一起学习。

性能:

cost-free for proposal

精度:

our detection system has a frame rate of5fps (including all steps) on a GPU, while achieving state-of-the-art objectdetection accuracy on PASCAL VOC 2007 (73.2% mAP) and 2012 (70.4% mAP) using300 proposals per image

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-03 22:49:35

CNN检测摘要的相关文章

AI佳作解读系列(五) - 目标检测二十年技术综述

计算机视觉中的目标检测,因其在真实世界的大量应用需求,比如自动驾驶.视频监控.机器人视觉等,而被研究学者广泛关注. 上周四,arXiv新出一篇目标检测文献<Object Detection in 20 Years: A Survey>,其对该领域20年来出现的技术进行了综述,这是一篇投向PAMI的论文,作者们review了400+篇论文,总结了目标检测发展的里程碑算法和state-of-the-art,并且难能可贵的对算法流程各个技术模块的演进也进行了说明,还深入到目标检测的特定领域,如人脸检

Facebook提出DensePose数据集和网络架构:可实现实时的人体姿态估计

https://baijiahao.baidu.com/s?id=1591987712899539583 选自arXiv 作者:Rza Alp Güler, Natalia Neverova, Iasonas Kokkinos 机器之心编译 参与:Panda 实现从 2D 图像到 3D 表面的对应在很多方面都有极具价值的应用前景.近日,FAIR 发布了一篇研究论文,介绍了他们通过人工方式标注的图像到表面密集对应数据集 DensePose-COCO 以及基于此训练的 DensePose-RCNN

m2014_c-&gt;c语言容器类工具列

转自:http://www.cnblogs.com/sniperHW/category/374086.html cocos2dx内存管理 摘要: cocos2dx基于引用计数管理内存,所有继承自CCObject的对象都将获得引用计数的能力,可通过调用retain成员函数用于引用计数值,调用release减少引用计数值,当计数值减为0时销毁对象.cocos2dx的对象管理是树形结构的,可通过调用父亲节点的addChild成员函数将一个子节点对象...阅读全文 posted @ 2014-06-15

学习笔记TF014:卷积层、激活函数、池化层、归一化层、高级层

CNN神经网络架构至少包含一个卷积层 (tf.nn.conv2d).单层CNN检测边缘.图像识别分类,使用不同层类型支持卷积层,减少过拟合,加速训练过程,降低内存占用率. TensorFlow加速所有不同类弄卷积层卷积运算.tf.nn.depthwise_conv2d,一个卷积层输出边接到另一个卷积层输入,创建遵循Inception架构网络 Rethinking the Inception Architecture for Computer Vision https://arxiv.org/ab

iOS OpenCV资料收集

OpenCV iOS Title: OpenCV iOS Hello Compatibility: > OpenCV 2.4.3 Author: Charu Hans You will learn how to link OpenCV with iOS and write a basic application. Title: OpenCV iOS - Image Processing Compatibility: > OpenCV 2.4.3 Author: Charu Hans You w

图像处理URL

随笔分类 - 图像处理/图像增强等 图像增强: 图像复原: 图像重建: 图像分割: 图像特效: 图像匹配: 图像形态学处理: 图像几何处理: 图像正交变换: 人工智能: 跟踪: 图像处理之增强---图像模糊检测 摘要: 这种检测可以做宽动态的检测,也可应用稳像算法我们实现了拉普拉斯方差算法,该算法提供给我们一个浮点数来代表具体图像的"模糊度".该算法快速,简单且易于使用--用拉普拉斯算子与输入图像做卷积然后计算方差即可.如果方差低于预定义阈值,图像就被标记为"模糊"

基于卷积神经网络(CNN)的中文垃圾邮件检测

前言 跳过废话,直接看正文 文本分类任务是一个经久不衰的课题,其应用包括垃圾邮件检测.情感分析等. 传统机器学习的做法是先进行特征工程,构建出特征向量后,再将特征向量输入各种分类模型(贝叶斯.SVM.神经网络等)进行分类. 随着深度学习的发展以及RNN.CNN的陆续出现,特征向量的构建将会由网络自动完成,因此我们只要将文本的向量表示输入到网络中就能够完成自动完成特征的构建与分类过程. 就分类任务而言,CNN比RNN更为合适.CNN目前在图像处理方向应用最为广泛,在文本处理上也有一些的应用.本文将

人脸检测及识别python实现系列(4)——卷积神经网络(CNN)入门

人脸检测及识别python实现系列(4)--卷积神经网络(CNN)入门 上篇博文我们准备好了2000张训练数据,接下来的几节我们将详细讲述如何利用这些数据训练我们的识别模型.前面说过,原博文给出的训练程序使用的是keras库,对我的机器来说就是tensorflow版的keras.训练程序建立了一个包含4个卷积层的神经网络(CNN),程序利用这个网络训练我的人脸识别模型,并将最终训练结果保存到硬盘上.在我们实际动手操练之前我们必须先弄明白一个问题--什么是卷积神经网络(CNN)? CNN(Conv

基于CNN的人脸相似度检测

人脸相似度检测主要是检测两张图片中人脸的相似度,从而判断这两张图片的对象是不是一个人. 在上一篇文章中,使用CNN提取人脸特征,然后利用提取的特征进行分类.而在人脸相似度检测的工作中,我们也可以利用卷积神经网络先提取特征,然后对提取的特征进行利用. 我们取fc7提取的4096维特征,然后对两个向量进行pairwise相似度检测,即可得到人脸相似度,然后设定一个阈值,判断是否维同一个人.