学习日志---线性回归与logistic回归

导说:

都属于广义线性回归范畴。

线性回归分析:一元线性(当个因变量,一次,是条直线);

多元线性(因变量有很多个,但也是一次,在空间中就是一个平面);

广义线性(高维线性回归,也就是一个超平面)

(都是一次的,因此称为线性回归)

非线性回归分析:非一次的,是曲线,有些可以用线性模型处理,称为广义线性模型,例如Logistic回

归;、

困难:筛选变量(降维技术),避免多重共线性(某一变量依赖于其他几个变量),观察拟合方程,避

免过拟合。。。

使用线性回归依据:

对于线性回归,可以使用相关系数判断这些变量是否适合使用线性去拟合:如下

可以通过柯西不等式证明其值在-1至1之间。

离1或者-1越接近时,则可以说明其线性相关程度越高。正相关与负相关。

时间: 2024-11-08 22:46:17

学习日志---线性回归与logistic回归的相关文章

【转载】对线性回归,logistic回归和一般回归的认识

对线性回归,logistic回归和一般回归的认识 [转载时请注明来源]:http://www.cnblogs.com/jerrylead JerryLead 2011年2月27日 作为一个机器学习初学者,认识有限,表述也多有错误,望大家多多批评指正. 1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中的一种方法.该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数学模型用于预测或者分类.该方法处理的数据可以是多

对线性回归,logistic回归和一般回归

对线性回归,logistic回归和一般回归 [转自]:http://www.cnblogs.com/jerrylead JerryLead 2011年2月27日 作为一个机器学习初学者,认识有限,表述也多有错误,望大家多多批评指正. 1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中的一种方法.该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数学模型用于预测或者分类.该方法处理的数据可以是多维的. 讲义最初介

机器学习算法(优化)之一:梯度下降算法、随机梯度下降(应用于线性回归、Logistic回归等等)

本文介绍了机器学习中基本的优化算法-梯度下降算法和随机梯度下降算法,以及实际应用到线性回归.Logistic回归.矩阵分解推荐算法等ML中. 梯度下降算法基本公式 常见的符号说明和损失函数 X :所有样本的特征向量组成的矩阵 x(i) 是第i个样本包含的所有特征组成的向量x(i)=(x(i)1,x(i)2...,x(i)n) y(i) 第i个样本的label,每个样本只有一个label,y(i)是标量(一个数值) hθ(x(i)) :拟合函数,机器学习中可以用多种类型的拟合函数 θ 是函数变量,

对线性回归,logistic回归和一般回归的认识

假设有一个房屋销售的数据如下:这个表类似于北京5环左右的房屋价钱,我们可以做出一个图,x轴是房屋的面积.y轴是房屋的售价,如下: 如果来了一个新的面积,假设在销售价钱的记录中没有的,我们怎么办呢? 我们可以用一条曲线去尽量准的拟合这些数据,然后如果有新的输入过来,我们可以在将曲线上这个点对应的值返回.如果用一条直线去拟合,可能是下面 的样子:绿色的点就是我们想要预测的点. 首先给出一些概念和常用的符号. 房屋销售记录表:训练集(training set)或者训练数据(training data)

在matlab中实现线性回归和logistic回归

本文主要讲解在matlab中实现Linear Regression和Logistic Regression的代码,并不涉及公式推导.具体的计算公式和推导,相关的机器学习文章和视频一大堆,推荐看Andrew NG的公开课. 一.线性回归(Linear Regression) 方法一.利用公式 : function [ theta ] = linearReg() %线性回归. X=[1 1;1 2;1 3;1 4]; %注意第一列全为1,即x0=1,第二列才为x1 Y=[1.1;2.2;2.7;3.

1.线性回归、Logistic回归、Softmax回归

本次回归章节的思维导图版总结已经总结完毕,但自我感觉不甚理想.不知道是模型太简单还是由于自己本身的原因,总结出来的东西感觉很少,好像知识点都覆盖上了,但乍一看,好像又什么都没有.不管怎样,算是一次尝试吧,慢慢地再来改进.在这里再梳理一下吧! 线性回归(Linear Regression) 什么是回归? 给定一些数据,{(x1,y1),(x2,y2)-(xn,yn) },x的值来预测y的值,通常地,y的值是连续的就是回归问题,y的值是离散的就叫分类问题. 高尔顿的发现,身高的例子就是回归的典型模型

机器学习之线性回归以及Logistic回归

1.线性回归 回归的目的是预测数值型数据的目标值.目标值的计算是通过一个线性方程得到的,这个方程称为回归方程,各未知量(特征)前的系数为回归系数,求这些系数的过程就是回归. 对于普通线性回归使用的损失函数一般为平方误差.把其用最小二乘法进行优化得到的关于系数w求导所得到的矩阵形式的表达式求得的w便为最优解了. 线性回归可以参考:https://www.cnblogs.com/pinard/p/6004041.html 2.Logistic回归 逻辑回归假设数据服从伯努利分布,以最大化条件概率为学

机器学习二(线性回归和Logistic回归)

前言 由于本部分内容讲解资源较多,本文不做过多叙述,重点放在实际问题的应用上. 一.线性回归 线性回归中的线性指的是对于参数的线性的,对于样本的特征不一定是线性的. 线性模型(矩阵形式):y=XA+e 其中:A为参数向量,y为向量,X为矩阵,e为噪声向量. 对于线性模型,通常采用最小二乘法作为其解法(可通过最大似然估计推得). 最小二乘法是通过最小化误差的平方和寻找数据的最佳函数匹配. 最小二乘法的解法有很多种,通常有: 解析法即求通过函数的导数为0确定函数的极值点 矩阵法---解析法的矩阵形式

基于sklearn进行线性回归、logistic回归、svm等的简单操作总结

基于sklearn的一些AI算法基本操作 sklearn中的一些相关的库 分别导入这些相关算法的库 import pandas as pd #导入一个用于读取csv数据的容器 from sklearn.model_selection import train_test_split #用于数据集划分的模块 from sklearn.model_selection import GridSearchCV #用于交叉验证的模块 from sklearn.neighbors import KNeighb