【题目】
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
解法1:
直接把两个vector合并,然后排序,取中位数。注意对合并后vector长度的奇偶数的处理。此解法比较好想到,但是时间复杂度是O((m+n)log(m+n)).
代码如下:
class Solution { public: double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) { vector<int> mergedNums; mergedNums.assign(nums1.begin(), nums1.end()); mergedNums.insert(mergedNums.end(), nums2.begin(), nums2.end()); sort(mergedNums.begin(), mergedNums.end()); int len1 = nums1.size(); int len2 = nums2.size(); double median = (len1 + len2)%2 ? mergedNums[(len1 + len2)>>1] : (mergedNums[(len1 + len2 - 1)>>1] + mergedNums[(len1 + len2)>>1])/2.0; return median; } };
解法2:
时间复杂度能达到O(log(m+n)),但是思路比较复杂。我们可以把这个问题转化为寻找第k小的数,只不过这里的k是中位数。
参考解释:
http://blog.csdn.net/yutianzuijin/article/details/11499917
http://blog.csdn.net/zxzxy1988/article/details/8587244
代码如下:
double findKth(int a[], int m, int b[], int n, int k) { //always assume that m is equal or smaller than n if (m > n) return findKth(b, n, a, m, k); if (m == 0) return b[k - 1]; if (k == 1) return min(a[0], b[0]); //divide k into two parts int pa = min(k / 2, m), pb = k - pa; if (a[pa - 1] < b[pb - 1]) return findKth(a + pa, m - pa, b, n, k - pa); else if (a[pa - 1] > b[pb - 1]) return findKth(a, m, b + pb, n - pb, k - pb); else return a[pa - 1]; } class Solution { public: double findMedianSortedArrays(int A[], int m, int B[], int n) { int total = m + n; if (total & 0x1) return findKth(A, m, B, n, total / 2 + 1); else return (findKth(A, m, B, n, total / 2) + findKth(A, m, B, n, total / 2 + 1)) / 2; } };
时间: 2024-10-12 23:42:46