[机器学习案例1]基于KNN手写数字识别

算法介绍

之前已经介绍过,简单来说,K-NN可以看成:有那么一堆你已经知道分类的数据,然后当一个新数据进入的时候,就开始跟训练数据里的每个点求距离,然后挑离这个训练数据最近的K个点看看这几个点属于什么类型,然后用少数服从多数的原则,给新数据归类。

算法步骤:

算法步骤: 
1. step.1—初始化距离为最大值 
2. step.2—计算未知样本和每个训练样本的距离dist 
3. step.3—得到目前K个最临近样本中的最大距离maxdist 
4. step.4—如果dist小于maxdist,则将该训练样本作为K-最近邻样本 
5. step.5—重复步骤2、3、4,直到未知样本和所有训练样本的距离都算完 
6. step.6—统计K-最近邻样本中每个类标号出现的次数 
7. step.7—选择出现频率最大的类标号作为未知样本的类标号

案例分析

首先一个CNN算法

from numpy import *
import operator  

def createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = [‘A‘,‘A‘,‘B‘,‘B‘]
    return group,labels  

def classify0(inX,dataSet,labels,k):
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX,(dataSetSize,1)) - dataSet
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis = 1)
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()
    classCount = {}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    sortedClassCount = sorted(classCount.iteritems(),
                              key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0] 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

测试算法:

#! /usr/bin/env python
# -*- coding: utf-8 -*-
from numpy import *
from os import listdir
import KNN
from numpy.core import multiarray

def img2vector(filename):
    ‘图像文件转换成矩阵‘
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):             #将32行合并成一行
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect               #一个样本最终成为一个1*1024的向量

def handwritingClassTest():
    ‘手写识别测试函数,调用了KNN模块的KNN分类器函数‘
    hwLabels = []
    trainingFileList = listdir(‘trainingDigits‘)
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split(‘.‘)[0]
        classNumStr = int(fileStr.split(‘_‘)[0])
        hwLabels.append(classNumStr)
        trainingMat[i,:] = img2vector(‘trainingDigits/%s‘ % fileNameStr)

    testFileList = listdir(‘testDigits‘)
    errorCount = 0.0
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split(‘.‘)[0]
        classNumStr = int(fileStr.split(‘_‘)[0])
        vectorUnderTest = img2vector(‘testDigits/%s‘ % fileNameStr)
        classifierResult = KNN.classify0(vectorUnderTest, trainingMat, hwLabels, 3)
        print "in #%d, the classifier came back with: %d, the real answer is: %d" % (i, classifierResult, classNumStr)
        if (classifierResult != classNumStr):
            errorCount += 1.0
    print "\nthe total number of errors is: %d" % errorCount
    print "\nthe total error rate is: %f" % (errorCount/float(mTest))

handwritingClassTest()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • http://www.woaipu.com/shops/zuzhuan/61406

源码下载地址:

http://www.woaipu.com/shops/zuzhuan/61406

源码下载地址

时间: 2024-10-25 04:36:06

[机器学习案例1]基于KNN手写数字识别的相关文章

机器学习(二)-kNN手写数字识别

一.kNN算法 1.kNN算法是机器学习的入门算法,其中不涉及训练,主要思想是计算待测点和参照点的距离,选取距离较近的参照点的类别作为待测点的的类别. 2,距离可以是欧式距离,夹角余弦距离等等. 3,k值不能选择太大或太小,k值含义,是最后选取距离最近的前k个参照点的类标,统计次数最多的记为待测点类标. 4,欧式距离公式: 二.关于kNN实现手写数字识别 1,手写数字训练集测试集的数据格式,本篇文章说明的是<机器学习实战>书提供的文件,将所有数字已经转化成32*32灰度矩阵. 三.代码结构构成

【机器学习】BP神经网络实现手写数字识别

最近用python写了一个实现手写数字识别的BP神经网络,BP的推导到处都是,但是一动手才知道,会理论推导跟实现它是两回事.关于BP神经网络的实现网上有一些代码,可惜或多或少都有各种问题,在下手写了一份,连带着一些关于性能的分析也写在下面,希望对大家有所帮助. 本博文不含理论推导,如对BP的理论推导感兴趣百度即可,或参考<模式识别>. 一.数据库 程序使用的数据库是mnist手写数字数据库,这个数据库我有两个版本,一个是别人做好的.mat格式,训练数据有60000条,每条是一个784维的向量,

MFC基于对话框 手写数字识别 SVM+MNIST数据集

完整项目下载地址: http://download.csdn.net/detail/hi_dahaihai/9892004 本项目即拿MFC做了一个画板,画一个数字后可自行识别数字.此外还 有保存图片.清空画板功能,简单实用. 识别方法为SVM调用已经训练好的MNIST数据集"SVM_DATA.xml" MNIST数据集训练方法自行百度,一大堆. 本项目基于OpenCv 2.4.6,下载的朋友自行修改配置为自己使用的OpenCv版本即可.

Kaggle竞赛丨入门手写数字识别之KNN、CNN、降维

引言 这段时间来,看了西瓜书.蓝皮书,各种机器学习算法都有所了解,但在实践方面却缺乏相应的锻炼.于是我决定通过Kaggle这个平台来提升一下自己的应用能力,培养自己的数据分析能力. 我个人的计划是先从简单的数据集入手如手写数字识别.泰坦尼克号.房价预测,这些目前已经有丰富且成熟的方案可以参考,之后关注未来就业的方向如计算广告.点击率预测,有合适的时机,再与小伙伴一同参加线上比赛. 数据集 介绍 MNIST ("Modified National Institute of Standards an

Python 手写数字识别-knn算法应用

在上一篇博文中,我们对KNN算法思想及流程有了初步的了解,KNN是采用测量不同特征值之间的距离方法进行分类,也就是说对于每个样本数据,需要和训练集中的所有数据进行欧氏距离计算.这里简述KNN算法的特点: 优点:精度高,对异常值不敏感,无数据输入假定 缺点:计算复杂度高,空间复杂度高 适用数据范围:数值型和标称型(具有有穷多个不同值,值之间无序)    knn算法代码: #-*- coding: utf-8 -*- from numpy import * import operatorimport

DeepLearning (四) 基于自编码算法与softmax回归的手写数字识别

[原创]Liu_LongPo 转载请注明出处 [CSDN]http://blog.csdn.net/llp1992 softmax 回归模型,是logistic 回归模型在多分类问题上的推广.关于logistic回归算法的介绍,前面博客已经讲得很清楚,详情可以参考博客 机器学习实战ByMatlab(五)Logistic Regression 在logistic回归模型中,我们的激励函数sigmoid的输入为: z=θ0x0+θ1x1+θ2x2+...+θnxn 则可以得到假设函数为: hθ(x)

机器学习初探(手写数字识别)matlab读取数据集

手写数字识别是机器学习里面的一个经典问题,今天就这一段时间学习的机器学习,花一个下午茶的时间,试试机器学习. 首先数据库是在MNIST(http://yann.lecun.com/exdb/mnist/)下载下来的.下载下来的数据如下图所示.官方有给出数据怎么读取,我自己没有仔细看,因为我看到网上有人公布代码如何读取. 可以看到前四个是测试数据,后四个是训练数据. 这里我用matlab尝试读取这些数据. 首先看两个function. loadMNISTImages.m function imag

基于Numpy的神经网络+手写数字识别

基于Numpy的神经网络+手写数字识别 本文代码来自Tariq Rashid所著<Python神经网络编程> 代码分为三个部分,框架如下所示: # neural network class definition class neuralNetwork: # initialise the neural network def __init__(): pass # train the neural network def train(): pass # query the neural netwo

keras入门实战:手写数字识别

近些年由于理论知识的硬件的快速发展,使得深度学习达到了空前的火热.深度学习已经在很多方面都成功得到了应用,尤其是在图像识别和分类领域,机器识别图像的能力甚至超过了人类. 本文用深度学习Python库Keras实现深度学习入门教程mnist手写数字识别.mnist手写数字识别是机器学习和深度学习领域的"hello world",MNIST数据集是手写数字的数据集合,训练集规模为60000,测试集为10000. 本文的内容包括: 如何用Keras加载MNIST数据集 对于MNIST问题如何