[转]IO模型及select、poll、epoll和kqueue的区别

(一)首先,介绍几种常见的I/O模型及其区别,如下:

  • blocking I/O
  • nonblocking I/O
  • I/O multiplexing (select and poll)
  • signal driven I/O (SIGIO)
  • asynchronous I/O (the POSIX aio_functions)—————异步IO模型最大的特点是 完成后发回通知。

    阻塞与否,取决于实现IO交换的方式。

         异步阻塞是基于select,select函数本身的实现方式是阻塞的,而采用select函数有个好处就是它可以同时监听多个文件句柄.

         异步非阻塞直接在完成后通知,用户进程只需要发起一个IO操作然后立即返回,等IO操作真正的完成以后,应用程序会得到IO操作完成的通知,此时用户进程只需要对数据进行处理就好了,不需要进行实际的IO读写操作,因为真正的IO读取或者写入操作已经由内核完成了。

1 blocking I/O

这个不用多解释吧,阻塞套接字。下图是它调用过程的图示:

重点解释下上图,下面例子都会讲到。首先application调用 recvfrom()转入kernel,注意kernel有2个过程,wait for data和copy data from kernel to user。直到最后copy complete后,recvfrom()才返回。此过程一直是阻塞的。

2 nonblocking I/O:

与blocking I/O对立的,非阻塞套接字,调用过程图如下:

可以看见,如果直接操作它,那就是个轮询。。直到内核缓冲区有数据。

3 I/O multiplexing (select and poll)

最常见的I/O复用模型,select。

select先阻塞,有活动套接字才返回。与blocking I/O相比,select会有两次系统调用,但是select能处理多个套接字。

4 signal driven I/O (SIGIO)

只有UNIX系统支持,感兴趣的课查阅相关资料

I/O multiplexing (select and poll)相比,它的优势是,免去了select的阻塞与轮询,当有活跃套接字时,由注册的handler处理。

5 asynchronous I/O (the POSIX aio_functions)

很少有*nix系统支持,windows的IOCP则是此模型

完全异步的I/O复用机制,因为纵观上面其它四种模型,至少都会在由kernel copy data to appliction时阻塞。而该模型是当copy完成后才通知application,可见是纯异步的。好像只有windows的完成端口是这个模型,效率也很出色。

6 下面是以上五种模型的比较

可以看出,越往后,阻塞越少,理论上效率也是最优。

=====================分割线==================================

5种模型的比较比较清晰了,剩下的就是把select,epoll,iocp,kqueue按号入座那就OK了。

select和iocp分别对应第3种与第5种模型,那么epoll与kqueue呢?其实也于select属于同一种模型,只是更高级一些,可以看作有了第4种模型的某些特性,如callback机制。

为什么epoll,kqueue比select高级? 

答案是,他们无轮询。因为他们用callback取代了。想想看,当套接字比较多的时候,每次select()都要通过遍历FD_SETSIZE个Socket来完成调度,不管哪个Socket是活跃的,都遍历一遍。这会浪费很多CPU时间。如果能给套接字注册某个回调函数,当他们活跃时,自动完成相关操作,那就避免了轮询,这正是epoll与kqueue做的。

windows or *nix (IOCP or kqueue/epoll)?

诚然,Windows的IOCP非常出色,目前很少有支持asynchronous I/O的系统,但是由于其系统本身的局限性,大型服务器还是在UNIX下。而且正如上面所述,kqueue/epoll 与 IOCP相比,就是多了一层从内核copy数据到应用层的阻塞,从而不能算作asynchronous I/O类。但是,这层小小的阻塞无足轻重,kqueue与epoll已经做得很优秀了。

提供一致的接口,IO Design Patterns

实际上,不管是哪种模型,都可以抽象一层出来,提供一致的接口,广为人知的有ACE,Libevent(基于reactor模式)这些,他们都是跨平台的,而且他们自动选择最优的I/O复用机制,用户只需调用接口即可。说到这里又得说说2个设计模式,Reactor and Proactor。见:Reactor模式--VS--Proactor模式Libevent是Reactor模型,ACE提供Proactor模型。实际都是对各种I/O复用机制的封装。

Java nio包是什么I/O机制?

 现在可以确定,目前的java本质是select()模型,可以检查/jre/bin/nio.dll得知。至于java服务器为什么效率还不错。。我也不得而知,可能是设计得比较好吧。。-_-。

=====================分割线==================================

总结一些重点:

  1. 只有IOCP是asynchronous I/O,其他机制或多或少都会有一点阻塞。
  2. select低效是因为每次它都需要轮询。但低效也是相对的,视情况而定,也可通过良好的设计改善
  3. epoll, kqueue、select是Reacor模式,IOCP是Proactor模式。
  4. java nio包是select模型。。

(二)epoll 与select的区别

1. 使用多进程或者多线程,但是这种方法会造成程序的复杂,而且对与进程与线程的创建维护也需要很多的开销。(Apache服务器是用的子进程的方式,优点可以隔离用户)  (同步阻塞IO)

 

2.一种较好的方式为I/O多路转接(I/O multiplexing)(貌似也翻译多路复用),先构造一张有关描述符的列表(epoll中为队列),然后调用一个函数,直到这些描述符中的一个准备好时才返回,返回时告诉进程哪些I/O就绪。select和epoll这两个机制都是多路I/O机制的解决方案,select为POSIX标准中的,而epoll为Linux所特有的。

 

区别(epoll相对select优点)主要有三:

1.select的句柄数目受限,在linux/posix_types.h头文件有这样的声明:#define __FD_SETSIZE    1024  表示select最多同时监听1024个fd。而epoll没有,它的限制是最大的打开文件句柄数目。

 

2.epoll的最大好处是不会随着FD的数目增长而降低效率,在selec中采用轮询处理,其中的数据结构类似一个数组的数据结构,而epoll是维护一个队列,直接看队列是不是空就可以了。epoll只会对"活跃"的socket进行操作---这是因为在内核实现中epoll是根据每个fd上面的callback函数实现的。那么,只有"活跃"的socket才会主动的去调用 callback函数(把这个句柄加入队列),其他idle状态句柄则不会,在这点上,epoll实现了一个"伪"AIO。但是如果绝大部分的I/O都是“活跃的”,每个I/O端口使用率很高的话,epoll效率不一定比select高(可能是要维护队列复杂)。

 

3.使用mmap加速内核与用户空间的消息传递。无论是select,poll还是epoll都需要内核把FD消息通知给用户空间,如何避免不必要的内存拷贝就很重要,在这点上,epoll是通过内核于用户空间mmap同一块内存实现的。

关于epoll工作模式ET,LT

epoll有两种工作方式

ET:Edge Triggered,边缘触发。仅当状态发生变化时才会通知,epoll_wait返回。换句话,就是对于一个事件,只通知一次。且只支持非阻塞的socket。

LT:Level Triggered,电平触发(默认工作方式)。类似select/poll,只要还有没有处理的事件就会一直通知,以LT方式调用epoll接口的时候,它就相当于一个速度比较快的poll.支持阻塞和不阻塞的socket。

三 Linux并发网络编程模型

1  Apache 模型,简称 PPC ( Process Per Connection ,):为每个连接分配一个进程。主机分配给每个连接的时间和空间上代价较大,并且随着连接的增多,大量进程间切换开销也增长了。很难应对大量的客户并发连接。

2  TPC 模型( Thread Per Connection ):每个连接一个线程。和PCC类似。

3  select 模型:I/O多路复用技术。

.1 每个连接对应一个描述。select模型受限于 FD_SETSIZE即进程最大打开的描述符数linux2.6.35为1024,实际上linux每个进程所能打开描数字的个数仅受限于内存大小,然而在设计select的系统调用时,却是参考FD_SETSIZE的值。可通过重新编译内核更改此值,但不能根治此问题,对于百万级的用户连接请求  即便增加相应 进程数, 仍显得杯水车薪呀。

.2select每次都会扫描一个文件描述符的集合,这个集合的大小是作为select第一个参数传入的值。但是每个进程所能打开文件描述符若是增加了 ,扫描的效率也将减小。

.3内核到用户空间,采用内存复制传递文件描述上发生的信息。

4 poll 模型:I/O多路复用技术。poll模型将不会受限于FD_SETSIZE,因为内核所扫描的文件 描述符集合的大小是由用户指定的,即poll的第二个参数。但仍有扫描效率和内存拷贝问题。

5 pselect模型:I/O多路复用技术。同select。

6 epoll模型:

.1)无文件描述字大小限制仅与内存大小相关

.2)epoll返回时已经明确的知道哪个socket fd发生了什么事件,不用像select那样再一个个比对。

.3)内核到用户空间采用共享内存方式,传递消息。

四 :FAQ

1、单个epoll并不能解决所有问题,特别是你的每个操作都比较费时的时候,因为epoll是串行处理的。 所以你有还是必要建立线程池来发挥更大的效能。

2、如果fd被注册到两个epoll中时,如果有时间发生则两个epoll都会触发事件。

3、如果注册到epoll中的fd被关闭,则其会自动被清除出epoll监听列表。
4、如果多个事件同时触发epoll,则多个事件会被联合在一起返回。
5、epoll_wait会一直监听epollhup事件发生,所以其不需要添加到events中。
6、为了避免大数据量io时,et模式下只处理一个fd,其他fd被饿死的情况发生。linux建议可以在fd联系到的结构中增加ready位,然后epoll_wait触发事件之后仅将其置位为ready模式,然后在下边轮询ready fd列表。

参考:

http://blog.csdn.net/ysu108/article/details/7570571

http://techbbs.zol.com.cn/1/8_2245.html

转自:http://blog.csdn.net/wenbingoon/article/details/9004512

时间: 2024-11-02 15:30:38

[转]IO模型及select、poll、epoll和kqueue的区别的相关文章

Linux统系统开发12 Socket API编程3 TCP状态转换 多路IO高并发select poll epoll udp组播 线程池

[本文谢绝转载原文来自http://990487026.blog.51cto.com] Linux统系统开发12 Socket API编程3 TCP状态转换 多路IO高并发select  poll  epoll udp组播 线程池 TCP 11种状态理解: 1,客户端正常发起关闭请求 2,客户端与服务端同时发起关闭请求 3,FIN_WAIT1直接转变TIME_WAIT 4,客户端接收来自服务器的关闭连接请求 多路IO转接服务器: select模型 poll模型 epoll模型 udp组播模型 线

几种典型的服务器网络编程模型归纳(select poll epoll)

1.同步阻塞迭代模型 同步阻塞迭代模型是最简单的一种IO模型. 其核心代码如下: bind(srvfd); listen(srvfd); for(;;) { clifd = accept(srvfd,...); //开始接受客户端来的连接 read(clifd,buf,...); //从客户端读取数据 dosomthingonbuf(buf); write(clifd,buf)//发送数据到客户端 } 上面的程序存在如下一些弊端: 1)如果没有客户端的连接请求,进程会阻塞在accept系统调用处

IO复用之select poll epoll的总结

I/O复用使得程序能够同时监听多个文件描述符,对于提高程序性能至关重要.I/O复用不仅仅在网络程序中使用,但是我接触到的例子中,TCP网络编程那块使用I/O复用比较多,例如,TCP服务器同时处理监听socket和连接socket. 在了解I/O复用之前,我们需要先了解几个概念. 1,同步I/O与异步I/O 2,LT(水平触发)和ET(边缘触发) POSIX把两个术语定义如下: 同步I/O:导致请求进程阻塞,直到I/O操作完成 异步I/O:  不导致请求进程阻塞 阻塞是进程在等待某种资源,但是不能

IO复用一select, poll, epoll用法说明

三种IO复用类型 Select系统调用 #include<sys/select.h> int select(int nfds, fd_set* readfds, fd_set* writefds, fd_set* execptfds,struct timeval* timeout); #nfds表示监听的文件描述符总数: #readfds,writefds,execptfds分别表示对应的fd_set类型的集合 可以如下定义:fd_set readfds,writefds,execptfds

文档-linux io模式及select,poll,epoll

文档-Linux IO模式详解 1. 概念说明 在进行解释之前,首先要说明几个概念:- 用户空间和内核空间- 进程切换- 进程的阻塞- 文件描述符- 缓存 I/O 1.1 用户空间与内核空间 现在操作系统都是采用虚拟存储器,那么对32位操作系统而言,它的寻址空间(虚拟存储空间)为4G(2的32次方).操作系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限.为了保证用户进程不能直接操作内核(kernel),保证内核的安全,操心系统将虚拟空间划分为两部分

多进程、协程、事件驱动及select poll epoll

目录 -多线程使用场景 -多进程 --简单的一个多进程例子 --进程间数据的交互实现方法 ---通过Queues和Pipe可以实现进程间数据的传递,但是不能实现数据的共享 ---Queues ---Pipe ---通过Manager可以不同进程间实现数据的共享 --进程同步,即进程锁 --进程池 -协程 --先用yield实现简单的协程 --Greenlet --Gevent --用协程gevent写一个简单并发爬网页 -事件驱动 --IO多路复用 ---用户空间和内核空间 ---文件描述符fd

详细说说select poll epoll

(以下内容来自网络和自己的总结,再次感谢网络中的大神们提供的见解) 在探索select poll  epoll之前我们首先要知道什么叫多路复用: 下来探索一下为什么会用到多路复用: 首先我们看看一个客户端请求服务器的完整过程.首先,请求过来,要建立连接,然后再接收数据,接收数据后,再发送数据. 具体到系统底层,就是读写事件,而当读写事件没有准备好时,必然不可操作,如果不用非阻塞的方式来调用,那就得阻塞调用了,事件没有准备好,那就只能等了,等事件准备好了,你再继续吧.阻塞调用会进入内核等待,cpu

# 进程/线程/协程 # IO:同步/异步/阻塞/非阻塞 # greenlet gevent # 事件驱动与异步IO # Select\Poll\Epoll异步IO 以及selectors模块 # Python队列/RabbitMQ队列

1 # 进程/线程/协程 2 # IO:同步/异步/阻塞/非阻塞 3 # greenlet gevent 4 # 事件驱动与异步IO 5 # Select\Poll\Epoll异步IO 以及selectors模块 6 # Python队列/RabbitMQ队列 7 8 ############################################################################################## 9 1.什么是进程?进程和程序之间有什么

转一贴,今天实在写累了,也看累了--【Python异步非阻塞IO多路复用Select/Poll/Epoll使用】

下面这篇,原理理解了, 再结合 这一周来的心得体会,整个框架就差不多了... http://www.haiyun.me/archives/1056.html 有许多封装好的异步非阻塞IO多路复用框架,底层在linux基于最新的epoll实现,为了更好的使用,了解其底层原理还是有必要的.下面记录下分别基于Select/Poll/Epoll的echo server实现.Python Select Server,可监控事件数量有限制: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Linux I/O复用中select poll epoll模型的介绍及其优缺点的比较

关于I/O多路复用: I/O多路复用(又被称为"事件驱动"),首先要理解的是,操作系统为你提供了一个功能,当你的某个socket可读或者可写的时候,它可以给你一个通知.这样当配合非阻塞的socket使用时,只有当系统通知我哪个描述符可读了,我才去执行read操作,可以保证每次read都能读到有效数据而不做纯返回-1和EAGAIN的无用功.写操作类似.操作系统的这个功能通过select/poll/epoll之类的系统调用来实现,这些函数都可以同时监视多个描述符的读写就绪状况,这样,**多