Java进阶之----LinkedList源码分析

今天在看LinkedList的源代码的时候,遇到了一个坑。我研究源码时,发现LinkedList是一个直线型的链表结构,但是我在baidu搜索资料的时候,关于这部分的源码解析,全部都说LinkedList是一个环形链表结构。。我纠结了好长时间,还以为我理解错了,最后还是在Google搜到了结果:因为我看的源码是1.7的而baidu出来的几乎全部都是1.6的。而且也没有对应的说明。在1.7之后,oracle将LinkedList做了一些优化,将1.6中的环形结构优化为了直线型了链表结构。这里要提示一下朋友们,看源码的时候,一定要看版本,有的情况是属于小改动,有的地方可能有大改动,这样只会越看越迷糊。

好,言归正传。我们来分析一下Java中LinkedList的部分源码。(本文针对的是1.7的源码)

LinkedList的基本结构

之前我一直在说链表链表,那什么是链表?顾名思义,链表就和链子一样,每一环都要连接着后边的一环和前边的一环,这样,当我们需要找这根链子的某一环的时候,只要我们能找到链子的任意一环,都可以找到我们需要的那一环。我们看一个图,就能很好的理解了。

在LinkedList中,我们把链子的“环”叫做“节点”,每个节点都是同样的结构。节点与节点之间相连,构成了我们LinkedList的基本数据结构,也是LinkedList的核心。

我们再来看一下LinkedList在jdk1.6和1.7直接结构的区别

首先看1.7中的结构

再来看1.6中的结构

对比一下,知道区别在哪里了吧?在1.7中,去掉了环形结构,自然在代码中的也会有部分的改变。

理解了上边的结构,在分析的时候就会容易许多。

LinkedList的构造方法

LinkedList包含3个全局参数,

size存放当前链表有多少个节点。

first为指向链表的第一个节点的引用。

last为指向链表的最后一个节点的引用。

LinkedList构造方法有两个,一个是无参构造,一个是传入Collection对象的构造。

    // 什么都没做,是一个空实现
    public LinkedList() {
    }

    public LinkedList(Collection<? extends E> c) {
        this();
        addAll(c);
    }

    public boolean addAll(Collection<? extends E> c) {
        return addAll(size, c);
    }

    public boolean addAll(int index, Collection<? extends E> c) {
    	// 检查传入的索引值是否在合理范围内
        checkPositionIndex(index);
        // 将给定的Collection对象转为Object数组
        Object[] a = c.toArray();
        int numNew = a.length;
        // 数组为空的话,直接返回false
        if (numNew == 0)
            return false;
        // 数组不为空
        Node<E> pred, succ;
        if (index == size) {
        	// 构造方法调用的时候,index = size = 0,进入这个条件。
            succ = null;
            pred = last;
        } else {
        	// 链表非空时调用,node方法返回给定索引位置的节点对象
            succ = node(index);
            pred = succ.prev;
        }
        // 遍历数组,将数组的对象插入到节点中
        for (Object o : a) {
            @SuppressWarnings("unchecked") E e = (E) o;
            Node<E> newNode = new Node<>(pred, e, null);
            if (pred == null)
                first = newNode;
            else
                pred.next = newNode;
            pred = newNode;
        }

        if (succ == null) {
            last = pred; // 将当前链表最后一个节点赋值给last
        } else {
        	// 链表非空时,将断开的部分连接上
            pred.next = succ;
            succ.prev = pred;
        }
        // 记录当前节点个数
        size += numNew;
        modCount++;
        return true;
    }

这里要说明一下,Node是LinkedList的内部私有类,它的组成很简单,只有一个构造方法。

    private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

构造方法的参数顺序是:前继节点的引用,数据,后继节点的引用。

有了上边的说明,我们来看LinkedList的构造方法。

这段代码还是很好理解的。我们可以配合图片来深入理解。

这段代码分为了2种情况,一个是原来的链表是空的,一个是原来的链表有值。我们分别来看

原来有值的情况

配合代码来看,是不是思路清晰了许多?

原来链表是空的话就更好办了,直接把传入的Collection对象转化为数组,数组的第一个值就作为头结点,即head,之后的顺序往里加入即可。并且节省了改变原节点指向的的操作。

对与两种构造方法,总结起来,可以概括为:无参构造为空实现。有参构造传入Collection对象,将对象转为数组,并按遍历顺序将数组首尾相连,全局变量first和last分别指向这个链表的第一个和最后一个。

LinkedList部分方法分析

addFirst/addLast分析

我们来看代码

    public void addFirst(E e) {
        linkFirst(e);
    }

    private void linkFirst(E e) {
        final Node<E> f = first;
        final Node<E> newNode = new Node<>(null, e, f); // 创建新的节点,新节点的后继指向原来的头节点,即将原头节点向后移一位,新节点代替头结点的位置。
        first = newNode;
        if (f == null)
            last = newNode;
        else
            f.prev = newNode;
        size++;
        modCount++;
    }

其实只要理解了上边的数据结构,这段代码是很好理解的。

加入一个新的节点,看方法名就能知道,是在现在的链表的头部加一个节点,既然是头结点,那么头结点的前继必然为null,所以这也是Node<E> newNode = new Node<>(null, e, f);这样写的原因。

之后将first指向了当前链表的头结点,之后对之前的头节点进行了判断,若在插入元素之前头结点为null,则当前加入的元素就是第一个几点,也就是头结点,所以当前的状况就是:头结点=刚刚加入的节点=尾节点。若在插入元素之前头结点不为null,则证明之前的链表是有值的,那么我们只需要把新加入的节点的后继指向原来的头结点,而尾节点则没有发生变化。这样一来,原来的头结点就变成了第二个节点了。达到了我们的目的。

addLast方法在实现上是个addFirst是一致的,这里就不在赘述了。有兴趣的朋友可以看看源代码。

其实,LinkedList中add系列的方法都是大同小异的,都是创建新的节点,改变之前的节点的指向关系。仅此而已。

getFirst/getLast方法分析

    public E getFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return f.item;
    }

    public E getLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return l.item;
    }

这段代码即不需要解析了吧。。很简单的。

get方法分析

这里主要看一下它调用的node方法

    public E get(int index) {
    	// 校验给定的索引值是否在合理范围内
        checkElementIndex(index);
        return node(index).item;
    }

    Node<E> node(int index) {
        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

一开始我很费解,这是要干嘛?后来我才明白,代码要做的是:判断给定的索引值,若索引值大于整个链表长度的一半,则从后往前找,若索引值小于整个链表的长度的一般,则从前往后找。这样就可以保证,不管链表长度有多大,搜索的时候最多只搜索链表长度的一半就可以找到,大大提升了效率。

removeFirst/removeLast方法分析

    public E removeFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return unlinkFirst(f);
    }

    private E unlinkFirst(Node<E> f) {
        // assert f == first && f != null;
        final E element = f.item;
        final Node<E> next = f.next;
        f.item = null;
        f.next = null; // help GC
        first = next;
        if (next == null)
            last = null;
        else
            next.prev = null;
        size--;
        modCount++;
        return element;
    }

摘掉头结点,将原来的第二个节点变为头结点,改变frist的指向,若之前仅剩一个节点,移除之后全部置为了null。

对于LinkedList的其他方法,大致上都是包装了以上这几个方法,没有什么其他的大的变动。

时间: 2024-09-28 01:37:53

Java进阶之----LinkedList源码分析的相关文章

死磕 java集合之LinkedList源码分析

问题 (1)LinkedList只是一个List吗? (2)LinkedList还有其它什么特性吗? (3)LinkedList为啥经常拿出来跟ArrayList比较? (4)我为什么把LinkedList放在最后一章来讲? 简介 LinkedList是一个以双向链表实现的List,它除了作为List使用,还可以作为队列或者栈来使用,它是怎么实现的呢?让我们一起来学习吧. 继承体系 通过继承体系,我们可以看到LinkedList不仅实现了List接口,还实现了Queue和Deque接口,所以它既

Java进阶之----HashMap源码分析

今天我们接着来看HashMap的源码,对几个常用的方法进行分析.在分析之前,我们还是要先对HashMap的结构有一个了解.看过之前我分析的ArrayList和LinkedList源码的朋友应该清楚,ArrayList内部是以数组实现的,LinkedList内部是以链表实现的.而HashMap则是对数组和链表的结合,虽然看上去复杂了一些,不过仔细分析一下,还是很好理解的.我们来看一张图片,是我根据我的理解画的. 我们在来看看Entry的内部结构是什么: 以上两个图,相信大家对HashMap的结构有

Java 集合之LinkedList源码分析

1.介绍 链表是数据结构中一种很重要的数据结构,一个链表含有一个或者多个节点,每个节点处理保存自己的信息之外还需要保存上一个节点以及下一个节点的指针信息.通过链表的表头就可以访问整个链表的信息.Java API中提供了链表的Java实现---LinkedList下.LinkedList是通过节点的连接实现链表的数据结构,向linkedList中插入或删除元素的速度是特别快,而随机访问的速度相对较慢,这个是由于链表本身的性质造成的,在链表中,每个节点都包含了前一个节点的引用,后一个节点的引用和节点

Java进阶之----LinkedHashMap源码分析

最近事情有点多,今天抽出时间来看看LinkedHashMap的源码,其实一开始是想分析TreeMap来这,但是看了看源代码之后,决定还是等过几天再分析,原因是TreeMap涉及到了树的操作..而之前没有接触过树的这种数据结构,只是在学校学一点皮毛而已..所以我还是打算过几天先恶补一下相关的知识再来对TreeMap做分析. 言归正传,我们今天来看LinkedHashMap.从名字上我们可以看出来,这个对插入的值是保持顺序的,即我们插入的顺序就是我们输出的顺序,如果不相信,我们可以用HashMap和

Java集合系列之LinkedList源码分析

一.LinkedList简介 LinkedList是一种可以在任何位置进行高效地插入和移除操作的有序序列,它是基于双向链表实现的. ps:这里有一个问题,就是关于实现LinkedList的数据结构是否为循环的双向链表,上网搜了有很多文章都说是循环的,并且有的文章中但是我看了源代码觉得应该不是循环的? 例如在删除列表尾部节点的代码: private E unlinkLast(Node<E> l) { final E element = l.item; final Node<E> pr

Java中arraylist和linkedlist源码分析与性能比较

Java中arraylist和linkedlist源码分析与性能比较 1,简介 在java开发中比较常用的数据结构是arraylist和linkedlist,本文主要从源码角度分析arraylist和linkedlist的性能. 2,arraylist源码分析 Arraylist底层的数据结构是一个对象数组,有一个size的成员变量标记数组中元素的个数,如下图: * The array buffer into which the elements of the ArrayList are sto

LinkedList源码分析--jdk1.8

JDK1.8 ArrayList源码分析--jdk1.8LinkedList源码分析--jdk1.8 LinkedList概述 ??1.LinkedList是用双向链表实现的集合,基于内部类Node<E>实现的集合.??2.LinkedList支持双向链表访问.克隆.序列化,元素有序且可以重复.??3.LinkedList没有初始化大小,也没有扩容机制,通过头结点.尾节点迭代查找. LinkedList数据结构 ??数据结构是集合的精华所在,数据结构往往也限制了集合的作用和侧重点,了解各种数据

java线程池ThreadPoolExector源码分析

java线程池ThreadPoolExector源码分析 今天研究了下ThreadPoolExector源码,大致上总结了以下几点跟大家分享下: 一.ThreadPoolExector几个主要变量 先了解下ThreadPoolExector中比较重要的几个变量.  corePoolSize:核心线程数量     maximumPoolSize:最大线程数量 allowCoreThreadTimeOut:是否允许线程超时(设置为true时与keepAliveTime,TimeUnit一起起作用)

There is no getter for property named &#39;*&#39; in &#39;class java.lang.String&#39;之源码分析

There is no getter for property named '*' in 'class java.lang.String',此错误之所以出现,是因为mybatis在对parameterType="String"的sql语句做了限制,假如你使用<when test="username != null">这样的条件判断时,就会出现该错误,不过今天我们来刨根问底一下. 一.错误再现 想要追本溯源,就需要错误再现,那么假设我们有这样一个sql查询