【目标检测】Fast RCNN算法详解

Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015.

继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度。在Github上提供了源码

同样使用最大规模的网络,Faster RCNN和RCNN相比,训练时间从84小时减少为9.5小时,测试时间从47秒减少为0.32秒。在PASCAL VOC 2007上的准确率相差无几,约在66%-67%之间.

思想

基础:RCNN

简单来说,RCNN使用以下四步实现目标检测:

a. 在图像中确定约1000-2000个候选框

b. 对于每个候选框内图像块,使用深度网络提取特征

c. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类

d. 对于属于某一特征的候选框,用回归器进一步调整其位置

更多细节可以参看这篇博客

改进:Fast RCNN

Fast RCNN方法解决了RCNN方法三个问题:

问题一:测试时速度慢

RCNN一张图像内候选框之间大量重叠,提取特征操作冗余。

本文将整张图像归一化后直接送入深度网络。在邻接时,才加入候选框信息,在末尾的少数几层处理每个候选框。

问题二:训练时速度慢

原因同上。

在训练时,本文先将一张图像送入网络,紧接着送入从这幅图像上提取出的候选区域。这些候选区域的前几层特征不需要再重复计算。

问题三:训练所需空间大

RCNN中独立的分类器和回归器需要大量特征作为训练样本。

本文把类别判断和位置精调统一用深度网络实现,不再需要额外存储。

以下按次序介绍三个问题对应的解决方法。

特征提取网络

基本结构

图像归一化为224×224直接送入网络。

前五阶段是基础的conv+relu+pooling形式,在第五阶段结尾,输入P个候选区域(图像序号×1+几何位置×4,序号用于训练)?。

注:文中给出了大中小三种网络,此处示出最大的一种。三种网络基本结构相似,仅conv+relu层数有差别,或者增删了norm层。

roi_pool层的测试(forward)

roi_pool层将每个候选区域均匀分成M×N块,对每块进行max pooling。将特征图上大小不一的候选区域转变为大小统一的数据,送入下一层。

roi_pool层的训练(backward)

首先考虑普通max pooling层。设xi为输入层的节点,yj为输出层的节点。

?L?xi={0?L?yjδ(i,j)=falseδ(i,j)=true

其中判决函数δ(i,j)表示i节点是否被j节点选为最大值输出。不被选中有两种可能:xi不在yj范围内,或者xi不是最大值。

对于roi max pooling,一个输入节点可能和多个输出节点相连。设xi为输入层的节点,yrj为第r个候选区域的第j个输出节点。

?L?xi=Σr,jδ(i,r,j)?L?yrj

判决函数δ(i,r,j)表示i节点是否被候选区域r的第j个节点选为最大值输出。代价对于xi的梯度等于所有相关的后一层梯度之和。

网络参数训练

参数初始化

网络除去末尾部分如下图,在ImageNet上训练1000类分类器。结果参数作为相应层的初始化参数。

其余参数随机初始化。

分层数据

在调优训练时,每一个mini-batch中首先加入N张完整图片,而后加入从N张图片中选取的R个候选框。这R个候选框可以复用N张图片前5个阶段的网络特征。

实际选择N=2, R=128。

训练数据构成

N张完整图片以50%概率水平翻转。

R个候选框的构成方式如下:

类别 比例 方式
前景 25% 与某个真值重叠在[0.5,1]的候选框
背景 75% 与真值重叠的最大值在[0.1,0.5)的候选框

分类与位置调整

数据结构

第五阶段的特征输入到两个并行的全连层中(称为multi-task)。

cls_score层用于分类,输出K+1维数组p,表示属于K类和背景的概率。

bbox_prdict层用于调整候选区域位置,输出4*K维数组t,表示分别属于K类时,应该平移缩放的参数。

代价函数

loss_cls层评估分类代价。由真实分类u对应的概率决定:

Lcls=?logpu

loss_bbox评估检测框定位代价。比较真实分类对应的预测参数tu和真实平移缩放参数为v的差别:

Lloc=Σ4i=1g(tui?vi)

g为Smooth L1误差,对outlier不敏感:

g(x)={0.5x2|x|?0.5|x|<1otherwise

总代价为两者加权和,如果分类为背景则不考虑定位代价:

L={Lcls+λLlocLclsu为前景u为背景

存疑:bbox_loss_weights数据块的作用是?

全连接层提速

分类和位置调整都是通过全连接层(fc)实现的,设前一级数据为x后一级为y,全连接层参数为W,尺寸u×v。一次前向传播(forward)即为:

y=Wx

计算复杂度为u×v。

将W进行SVD分解,并用前t个特征值近似:

W=UΣVT≈U(:,1:t)?Σ(1:t,1:t)?V(:,1:t)T

计算复杂度变为u×t+v×t。

在实现时,相当于把一个全连接层拆分成两个,中间以一个低维数据相连。

在github的源码中,这部分似乎没有实现。

实验与结论

实验过程不再详述,只记录结论

- 网络末端同步训练的分类和位置调整,提升准确度

- 使用多尺度的图像金字塔,性能几乎没有提高

- 倍增训练数据,能够有2%-3%的准确度提升

- 网络直接输出各类概率(softmax),比SVM分类器性能略好

- 更多候选窗不能提升性能

关于RCNN, Fast RCNN, Faster RCNN这一系列目标检测算法,可以进一步参考作者在15年ICCV上的讲座Training R-CNNs of various velocities

时间: 2024-10-21 08:50:46

【目标检测】Fast RCNN算法详解的相关文章

第二十九节,目标检测算法之Fast R-CNN算法详解

Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE International Conference on Computer Vision. 2015. 继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度.在Github上提供了源码. 之所以提出Fast R-CNN,主要是因为R-CNN存在以下几个问题: 训练分多步.通过上一篇博文我们知道R-CN

6. 目标检测算法之Fast R-CNN算法详解(转)

6. 目标检测算法之Fast R-CNN算法详解(转) 原文链接:https://www.cnblogs.com/zyly/p/9246418.html 目录 一 Fast R-CNN思想 问题一:测试时速度慢 问题二:训练时速度慢 问题三:训练所需空间大 二 算法简述 三 算法详解 1.ROI池化层 2.训练 3.训练样本 4.损失函数 [8]目标检测(4)-Fast R-CNN Girshick, Ross. "Fast r-cnn." Proceedings of the IEE

目标检测算法之Fast R-CNN算法详解

&创新点 1. 规避R-CNN中冗余的特征提取操作,只对整张图像全区域进行一次特征提取 2. 用ROI pooling层取代最后一层max pooling层,同时引入建议框信息,提取相应建议框特征 3. Fast R-CNN网络末尾采用了并行的不同全连接层,可同时输出分类结果和窗口回归结果,实现了end-to-end的多任务训练(建议框提取除外),也不要额外的特征存储空间(R-CNN中这部分特征是共SVM和Bounding-box regression进行训练的,需要存储在硬盘上) 4. 采用S

【目标检测】Faster RCNN算法详解

Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." Advances in Neural Information Processing Systems. 2015. 本文是继RCNN[1],fast RCNN[2]之后,目标检测界的领军人物Ross Girshick团队在2015年的又一力作.简单网络目标检测速度达到17fps,在P

第二十八节,目标检测算法之R-CNN算法详解

Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. R-CNN的全称是Region-CNN,它可以说是第一个成功将深度学习应用到目标检测上的算法.后面要讲到的

5. 目标检测算法之R-CNN算法详解(转)

5. 目标检测算法之R-CNN算法详解(转) 原文链接:https://www.cnblogs.com/zyly/p/9246221.html 目录 一 R-CNN思路 二 算法简述 三 训练步骤 四 优缺点 Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conferenc

目标检测 1 : 目标检测中的Anchor详解

咸鱼了半年,年底了,把这半年做的关于目标的检测的内容总结下. 本文主要有两部分: 目标检测中的边框表示 Anchor相关的问题,R-CNN,SSD,YOLO 中的anchor 目标检测中的边框表示 目标检测中,使用一个矩形的边框来表示.在图像中,可以基于图像坐标系使用多种方式来表示矩形框. 最直接的方式,使用矩形框的左上角和右下角在图像坐标系中的坐标来表示. 使用绝对坐标的\((x_{min},y_{min},x_{max},y_{max})\). 但是这种绝对坐标的表示方式,是以原始图像的像素

机器学习经典算法详解及Python实现---朴素贝叶斯分类及其在文本分类、垃圾邮件检测中的应用

摘要: 朴素贝叶斯分类是贝叶斯分类器的一种,贝叶斯分类算法是统计学的一种分类方法,利用概率统计知识进行分类,其分类原理就是利用贝叶斯公式根据某对象的先验概率计算出其后验概率(即该对象属于某一类的概率),然后选择具有最大后验概率的类作为该对象所属的类.总的来说:当样本特征个数较多或者特征之间相关性较大时,朴素贝叶斯分类效率比不上决策树模型:当各特征相关性较小时,朴素贝叶斯分类性能最为良好.另外朴素贝叶斯的计算过程类条件概率等计算彼此是独立的,因此特别适于分布式计算.本文详述了朴素贝叶斯分类的统计学

机器学习经典算法详解及Python实现--CART分类决策树、回归树和模型树

摘要: Classification And Regression Tree(CART)是一种很重要的机器学习算法,既可以用于创建分类树(Classification Tree),也可以用于创建回归树(Regression Tree),本文介绍了CART用于离散标签分类决策和连续特征回归时的原理.决策树创建过程分析了信息混乱度度量Gini指数.连续和离散特征的特殊处理.连续和离散特征共存时函数的特殊处理和后剪枝:用于回归时则介绍了回归树和模型树的原理.适用场景和创建过程.个人认为,回归树和模型树