【原创】为什么Mongodb索引用B树,而Mysql用B+树?

引言

好久没写文章了,今天回来重操旧业。毕竟现在对后端开发的要求越来越高,大家要做好各种准备。
因此,大家有可能遇到如下问题

为什么Mysql中Innodb的索引结构采取B+树?

回答这个问题时,给自己留一条后路,不要把B树喷的一文不值。因为网上有些答案是说,B树不适合做文件存储系统的索引结构。如果按照那种答法,自己就给自己挖了一个坑,很难收场。因此,就有了这篇文章的诞生~

文末附面试指南!

正文

这里的Mysql指的是Innodb的存储引擎下的索引结构,其他存储引擎我们暂时不讨论。

B树和B+树

开头,我们先回忆一下,B树和B+树的结构以及特点,如下所示:
B树

注意一下B树的两个明显特点

  • 树内的每个节点都存储数据
  • 叶子节点之间无指针相邻

B+树

注意一下B树的两个明显特点

  • 数据只出现在叶子节点
  • 所有叶子节点增加了一个链指针

针对上面的B+树和B树的特点,我们做一个总结
(1)B树的树内存储数据,因此查询单条数据的时候,B树的查询效率不固定,最好的情况是O(1)。我们可以认为在做单一数据查询的时候,使用B树平均性能更好。但是,由于B树中各节点之间没有指针相邻,因此B树不适合做一些数据遍历操作。

(2)B+树的数据只出现在叶子节点上,因此在查询单条数据的时候,查询速度非常稳定。因此,在做单一数据的查询上,其平均性能并不如B树。但是,B+树的叶子节点上有指针进行相连,因此在做数据遍历的时候,只需要对叶子节点进行遍历即可,这个特性使得B+树非常适合做范围查询。

因此,我们可以做一个推论:没准是Mysql中数据遍历操作比较多,所以用B+树作为索引结构。而Mongodb是做单一查询比较多,数据遍历操作比较少,所以用B树作为索引结构。

那么为什么Mysql做数据遍历操作多?而Mongodb做数据遍历操作少呢?
因为Mysql是关系型数据库,而Mongodb是非关系型数据。

那为什么关系型数据库,做数据遍历操作多?而Mongodb做数据遍历操作少呢?
我们继续往下看

关系型VS非关系型

假设,我们此时有两个逻辑实体:学生(Student)和班级(Class),这两个逻辑实体之间是一对多的关系。毕竟一个班级有多个学生,一个学生只能属于一个班级。
关系型数据库
我们在关系型数据库中,考虑的是用几张表来表示这二者之间的实体关系。常见的无外乎是,一对一关系,用一张表就行。一对多关系,用两张表。多对多关系,用三张表。
那这里,我们需要用两张表表示二者之间逻辑关系,如下所示

那我们,此时要查cname1班的班级,有多少学生怎么办?
假设cname这列,我们建了索引!
执行SQL,如下所示!

SELECT *
FROM t_student t1, (
        SELECT cid
        FROM t_class
        WHERE cname = '1班'
    ) t2
WHERE t1.cid = t2.cid

而这,就涉及到了数据遍历操作!

因为但凡做这种关联查询,你躲不开join操作的!既然涉及到了join操作,无外乎从一个表中取一个数据,去另一个表中逐行匹配,如果索引结构是B+树,叶子节点上是有指针的,能够极大的提高这种一行一行的匹配速度!

有的人或许会抬杠说,如果我先执行

SELECT cid
FROM t_class
WHERE cname = '1班'

获得cid后,再去循环执行

SELECT *
FROM t_student
WHERE cid = ...

就可以避开join操作呀?

对此,我想说。你确实避开了join操作,但是你数据遍历操作还是没避开。你还是需要在student的这张表的叶子节点上,一遍又一遍的遍历!

那在非关系型数据库中,我们如何查询cname1班的班级,有多少学生?
非关系型数据库
有人说,你可以这么设计?也就是弄两个集合如下所示

然后勒,执行两次查询去获得结果!

确实,这么设计是可以的,我没说不行。只是不符合非关系型数据库的设计初衷。在MongoDB中,根本不推荐这么设计。虽然,Mongodb中有一个\(lookup操作,可以做join查询。但是理想情况下,这个\)lookup操作应该不会经常使用,如果你需要经常使用它,那么你就使用了错误的数据存储了(数据库):如果你有相关联的数据,应该使用关系型数据库(SQL)。

因此,正规的设计应该如下

假设name这列,我们建了索引!
我只寻执行一次语句

db.class.find( { name: '1班' } )

这样就能查询出自己想要的结果。

而这,就是一种单一数据查询!毕竟你不需要去逐行匹配,不涉及遍历操作,幸运的情况下,有可能一次IO就能够得到你想要的结果。

因此,由于关系型数据库和非关系型数据的设计方式上的不同。导致在关系型数据中,遍历操作比较常见,因此采用B+树作为索引,比较合适。而在非关系型数据库中,单一查询比较常见,因此采用B树作为索引,比较合适。

面试套路

目前套路有如下几种

套路一

你简历写了mysql,没写mongodb!
面试官:"说说mysql索引结构?"
我:"巴拉巴拉"
面试官:"知道为什么用B+树,不用B树么?"
这个时候正常的面试者就蒙了,会把B树的缺点喷一通!于是乎下一问就是
面试官:"其实一些非关系型数据库,如mongodb用的就是B树,你知道原因么?"
然后你就回去等通知了!

套路二

你简历写了mysql,也写了mongodb!
这种情况更完美!
面试官:"说说mysql索引结构?"
我:"巴拉巴拉"
面试官:"你简历写了Mongodb,有了解过他的索引结构么?"
我:"巴拉巴拉"
面试官:"为什么Mongodb索引用B树,而Mysql用B+树?"
然后你就回去等通知了!

套路三

你简历既没写mysql,没写mongodb!
面试官;"如果你来设计数据库,你会对他的索引用什么数据结构?"
我:"首先不考虑红黑树这类,巴拉巴拉...应该会用B树或者B+树。"
面试官;“如果我要设计一个像Mongodb那样的非关系型数据库,我要用什么数据结构当索引比较合适?”
然后你就可以回去等通知了!

上面三个套路都是真实存在的!总之,只要面试官想问这个问题,都可以绕到这个问题上去!

总结

其实这篇文章很早以前就想写,后来一直耽搁着。今天有时间刚好补上,希望大家有所收获。

原文地址:https://www.cnblogs.com/rjzheng/p/12316685.html

时间: 2024-11-09 00:49:52

【原创】为什么Mongodb索引用B树,而Mysql用B+树?的相关文章

Huffman tree(赫夫曼树、霍夫曼树、哈夫曼树、最优二叉树)

flyfish 2015-8-1 Huffman tree因为翻译不同所以有其他的名字 赫夫曼树.霍夫曼树.哈夫曼树 定义引用自严蔚敏<数据结构> 路径 从树中一个结点到另一个结点之间的分支构成两个结点之间的路径. 路径长度 路径上的分支数目称作路径长度. 树的路径长度 树的路径长度就是从根节点到每一结点的路径长度之和. 结点的带权路径长度 结点的带权路径长度就是从该结点到根节点之间的路径长度与结点上权的乘积. 树的带权路径长度 树的带权路径长度就是树中所有叶子结点的带权路径长度之和,通常记做

BZOJ 3295 [Cqoi2011]动态逆序对 树状数组套线段树

题意:链接 方法:树状数组套线段树 解析: 这题基本上写的都是什么CDQ点分治,主席树之类的,然而这我都并不会,所以写了一发平衡树套线段树想卡时卡过去,然而我并没有得逞,T的不要不要的,这里用平衡树套线段树的方法参见我的题解:排队.这道题比那道更要简单. 然后我就打算弃坑了~不过看140142做这道题做的热火朝天的,还是打算回来做一下,yy下树状数组套线段树,然后去看hz的题解,只看懂他写理论部分了,代码部分不知所云,所以还是还是得yy.引用理论部分. 删除某个数,只要统计它之前还存在的比它大的

MySQL 使用B+树

概述 首先需要澄清的一点是,MySQL 跟 B+ 树没有直接的关系,真正与 B+ 树有关系的是 MySQL 的默认存储引擎 InnoDB,MySQL 中存储引擎的主要作用是负责数据的存储和提取,除了 InnoDB 之外,MySQL 中也支持 MyISAM 作为表的底层存储引擎. 我们在使用 SQL 语句创建表时就可以为当前表指定使用的存储引擎,你能在 MySQL 的文档 Alternative Storage Engines 中找到它支持的全部存储引擎,例如:MyISAM.CSV.MEMORY 

[poj2104]可持久化线段树入门题(主席树)

解题关键:离线求区间第k小,主席树的经典裸题: 对主席树的理解:主席树维护的是一段序列中某个数字出现的次数,所以需要预先离散化,最好使用vector的erase和unique函数,很方便:如果求整段序列的第k小,我们会想到离散化二分和线段树的做法, 而主席树只是保存了序列的前缀和,排序之后,对序列的前缀分别做线段树,具有差分的性质,因此可以求任意区间的第k小,如果主席树维护索引,只需要求出某个数字在主席树中的位置,即为sort之后v中的索引:若要求第k大,建树时反向排序即可 1 #include

浅谈二维中的树状数组与线段树

一般来说,树状数组可以实现的东西线段树均可胜任,实际应用中也是如此.但是在二维中,线段树的操作变得太过复杂,更新子矩阵时第一维的lazy标记更是麻烦到不行. 但是树状数组在某些询问中又无法胜任,如最值等不符合区间减法的询问.此时就需要根据线段树与树状数组的优缺点来选择了. 做一下基本操作的对比,如下图. 因为线段树为自上向下更新,从而可以使用lazy标记使得矩阵的更新变的高校起来,几个不足就是代码长,代码长和代码长. 对于将将矩阵内元素变为某个值,因为树状数组自下向上更新,且要满足区间加法等限制

树讲解(2)——树的输入,重心,直径

one.树的输入 1.输入每个节点父亲节点的编号 #include<vector> #include<stdio.h> #include<cstdlib> #include<cstring> #include<iostream> #include<algorithm> #define N 100000 #define maxn 123456 using namespace std; int n,x,fa[N]; bool vis[N]

B树、B-树、B+树、B*树

B树.B-树.B+树.B*树 B树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中: 否则,如果查询关键字比结点关键字小,就进入左儿子:如果比结点关键字大,就进入 右儿子:如果左儿子或右儿子的指针为空,则报告找不到相应的关键字: 如果B树的所有非叶子结点的左右子树的结点数目均保持差

poj 3237 Tree(树链剖分,线段树)

Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 7268   Accepted: 1969 Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edges are numbered 1 through N − 1. Each edge is associated with

【转】B树、B-树、B+树、B*树、红黑树、 二叉排序树、trie树Double Array 字典查找树简介

B  树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中:否则,如果查询关键字比结点关键字小,就进入左儿子:如果比结点关键字大,就进入右儿子:如果左儿子或右儿子的指针为空,则报告找不到相应的关键字: 如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性