华中师范大学2008年数学分析考研试题参考解答

来源 [尊重原有作者劳动成果]

一、 计算题

1:解:

$\underset{n\to +\infty }{\mathop{\lim }}\,\frac{1}{n}\sqrt[n]{n(n+1)(n+2)\cdots (2n-1)}=\underset{n\to +\infty }{\mathop{\lim }}\,\frac{1}{n}\sqrt[n]{\frac{1}{2}(n+1)(n+2)\cdots [n+(n-1)](n+n)} $

$=\underset{n\to +\infty }{\mathop{\lim }}\,\sqrt[n]{\frac{1}{2}}\cdot \underset{n\to +\infty }{\mathop{\lim }}\,\sqrt[n]{\prod\limits_{i=1}^{n}{(1+\frac{i}{n})}}=\underset{n\to +\infty }{\mathop{\lim }}\,\sqrt[n]{\prod\limits_{i=1}^{n}{(1+\frac{i}{n})}}$

$\underset{n\to +\infty }{\mathop{\lim }}\,\sqrt[n]{\prod\limits_{i=1}^{n}{(1+\frac{i}{n})}}={{e}^{\underset{n\to +\infty }{\mathop{\lim }}\,\frac{1}{n}\sum\limits_{i=1}^{n}{\ln (1+\frac{i}{n})}}}={{e}^{\int_{0}^{1}{\ln (1+x)dx}}}$

由于

$\int_{0}^{1}{\ln (1+x)dx=x\ln (1+x)|_{0}^{1}}-\int_{0}^{1}{\frac{x}{1+x}}dx=\ln 2-1+\ln (1+x)|_{0}^{1}=2\ln 2-1=\ln \frac{4}{e}$

于是

$\underset{n\to +\infty }{\mathop{\lim }}\,\frac{1}{n}\sqrt[n]{n(n+1)(n+2)\cdots (2n-1)}=\frac{4}{e}$

2:解: 不妨设

$x=r\sin \varphi \cos \theta ,y=r\sin \varphi \sin \theta ,z=r\cos \varphi ,0\le \varphi \le \pi ,0\le \theta \le 2\pi ,0\le r\le t$

于是

$\iiint\limits_{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}\le {{t}^{2}}}{\sin \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}dxdydz}=\int_{0}^{2\pi }{d\theta \int_{0}^{\pi }{d\varphi \int_{0}^{t}{{{r}^{2}}\sin \varphi \cdot \sin rdr}}}$

$=2\pi \cdot (-\cos \varphi )_{0}^{\pi }\cdot \int_{0}^{t}{{{r}^{2}}}\sin rdr=4\pi \int_{0}^{t}{{{r}^{2}}}\sin rdr$

于是

$\underset{t\to {{0}^{+}}}{\mathop{\lim }}\,\frac{\iiint\limits_{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}\le {{t}^{2}}}{\sin \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}dxdydz}}{{{t}^{4}}}=\underset{t\to {{0}^{+}}}{\mathop{\lim }}\,\frac{4\pi \int_{0}^{t}{{{r}^{2}}\sin rdr}}{{{t}^{4}}}=\underset{t\to {{0}^{+}}}{\mathop{\lim }}\,\frac{\pi {{t}^{2}}\sin t}{{{t}^{3}}}=\pi $

3:解:不妨设

$P(x,y)=-\frac{y}{{{x}^{2}}+9{{y}^{2}}},Q(x,y)=\frac{x}{{{x}^{2}}+9{{y}^{2}}}$

于是

${{P}_{y}}=\frac{9{{y}^{2}}-{{x}^{2}}}{{{x}^{2}}+9{{y}^{2}}},{{Q}_{x}}=\frac{9{{y}^{2}}-{{x}^{2}}}{{{x}^{2}}+9{{y}^{2}}}$

记$D$是$L$所包围的封闭面积,由格林公式可知:

$\oint_{L}{\frac{xdy-ydx}{{{x}^{2}}+9{{y}^{2}}}}=\iint_{D}{({{Q}_{y}}-{{P}_{x}})dxdy=0}$

二、 证明:不妨设$g(x)={{x}^{\alpha }},0\alpha 1,x\in [0,+\infty )$,且$[0,+\infty )=[0,1]\cup [1,+\infty )$

对任意的$\varepsilon 0$,任意的${{x}_{1}},{{x}_{2}}\in [1,+\infty )$,由中值定理可知,存在$\xi $在${{x}_{1}}$与${{x}_{2}}$之间,使得

$\left| g({{x}_{1}})-g({{x}_{2}}) \right|=\left| g(\xi ) \right|\left| {{x}_{1}}-{{x}_{2}} \right|=\frac{\alpha }{{{\xi }^{^{1-\alpha }}}}\left| {{x}_{1}}-{{x}_{2}} \right|\le \alpha \left| {{x}_{1}}-{{x}_{2}} \right|$

于是令$\delta =\frac{\varepsilon }{\alpha }$,当$\left| {{x}_{1}}-{{x}_{2}} \right|\delta $时,有$\left| g({{x}_{1}})-g({{x}_{2}}) \right|\varepsilon $

于是$g(x)$在$[1,+\infty )$上一致连续

而$g(x)$在$[0,1]$上连续,则$g(x)$在$[0,1]$上一致连续

于是$g(x)$在$[0,+\infty )$上一致连续

由$\underset{x\to \infty }{\mathop{\lim }}\,f(x)$存在,则存在${{M}_{1}}0$,存在$N0$,当$nN$时,有$\left| f(x) \right|{{M}_{1}}$

而$f(x)$在$[0,N+1]$上连续,则$f(x)$在$[0,N+1]$上有界

于是存在${{M}_{2}}0$,对一切$x\in [0,N+1]$,有$\left| f(x) \right|{{M}_{2}}$

令$M=\max \{{{M}_{1}},{{M}_{2}}\}$,则对一切$x\in [0,+\infty )$,有$\left| f(x) \right|M$

对任意的$\varepsilon 0$,任意的${{x}_{3}},{{x}_{4}}\in [0,+\infty )$,由中值定理可知,存在$\eta $在${{x}_{3}}$与${{x}_{4}}$之间,使得

$\left| f(g({{x}_{3}}))-f(g({{x}_{4}})) \right|=\left| f(\eta ) \right|\left| g({{x}_{3}})-g({{x}_{4}}) \right|M\left| g({{x}_{3}})-g({{x}_{4}}) \right|$

由$g(x)$在$[0,+\infty )$上一致连续

则对上述$\varepsilon 0$,${{x}_{3}},{{x}_{4}}\in [0,+\infty )$,当$\left| {{x}_{3}}-{{x}_{4}} \right|\delta $时,有$\left| g({{x}_{3}})-g({{x}_{4}}) \right|\frac{\varepsilon }{M}$

即$\left| f(g({{x}_{3}}))-f(g({{x}_{4}})) \right|\varepsilon$

于是$f({{x}^{\alpha }})$在$[0,+\infty )$上一致连续

三、 证明:不妨设

$F(x)=[f(x)-f(a)][g(b)-g(a)]-[f(b)-f(a)][g(x)-g(a)],x\in [a,b]$

于是$F(a)=F(b)=0$

而$F(x)$在$[a,b]$上连续,$(a,b)$内可导,由罗尔定理可知:

存在$\xi \in (a,b)$,使得$F(\xi )=0$

即$[f(b)-f(a)]g(\xi )=[g(b)-g(a)]f(\xi )$

四、

(1)证明:,对任意的$x\in (0,+\infty )$由于$\underset{n\to +\infty }{\mathop{\lim }}\,\frac{n}{{{e}^{nx}}}=0$,则$f(x)$在$(0,+\infty )$上收敛

(2)证明:不妨设${{u}_{n}}(x)=n{{e}^{-nx}}$,由于$\underset{n\to +\infty }{\mathop{\lim }}\,{{u}_{n}}(x)=0$

于是

$\underset{x\in (0,+\infty )}{\mathop{\sup }}\,\left| {{u}_{n}}(x)-0 \right|\ge {{u}_{n}}(\frac{1}{n})=n{{e}^{-1}}\to +\infty \ne 0(n\to +\infty )$

于是$\sum\limits_{n=1}^{+\infty }{n{{e}^{-nx}}}$在$(0,+\infty )$上非一致收敛

(3)证明:由题可知:

$f(x)={{e}^{-x}}+2{{e}^{-2x}}+\cdots +n{{e}^{-nx}}+(n+1){{e}^{-(n+1)x}}+\cdots $

${{e}^{-x}}f(x)={{e}^{-2x}}+2{{e}^{-3x}}+\cdots +n{{e}^{-(n+1)x}}+(n+1){{e}^{-(n+2)x}}+\cdots $

于是

$(1-{{e}^{-x}})f(x)=\sum\limits_{n=1}^{+\infty }{{{e}^{-nx}}}=\frac{{{e}^{-x}}}{1-{{e}^{-x}}}$

则$f(x)=\frac{{{e}^{-x}}}{{{(1-{{e}^{-x}})}^{2}}}$

显然$f(x)$在$(0,+\infty )$上无穷次可导

(或用定义进行证明)

五、设$F(x,y)={{x}^{2}}+y-\sin (xy)$

(1) 显然,有$F(0,0)=0$

(2)${{F}_{y}}(x,y)=1-x\cos (xy)$

(3)${{F}_{y}}(0,0)=1\ne 0$

由隐函数存在定理,存在$\delta 0$,存在$x\in \left[ \delta ,+\infty \right) $上的连续可微的函数$0{{{u}}_{n}}\left( x \right)\le \frac{1}{{{n}^{3}}x}\le \frac{1}{\delta }\frac{1}{{{n}^{3}}}$,$y(0)=0$,满足$\left[ \delta ,+\infty \right) $,${S}\left( x \right)=\sum\limits_{n=1}^{\infty }{{{{{u}}}_{n}}\left( x \right)} $,${{F}_{x}}=2x-y\cos (xy)$,

且$y(x)=-\frac{{{F}_{x}}(x,y)}{{{F}_{y}}(x,y)}=-\frac{2x-y\cos (xy)}{1-x\cos (xy)}$

于是$y(0)=0$

六、

七、

(1)证明:由积分第一中值定理可知,存在${{x}_{n}}\in [n-1,n]$,使得

$\sum\limits_{n=1}^{+\infty }{{{\left| u({{x}_{n}}) \right|}^{2}}=\sum\limits_{n=1}^{+\infty }{\int_{n-1}^{n}{{{\left| u(x) \right|}^{2}}dx}=\int_{0}^{+\infty }{{{\left| u(x) \right|}^{2}}dx\le }}}\int_{0}^{+\infty }{({{\left| u(x) \right|}^{2}}+{{\left| u(x) \right|}^{2}})dx+\infty }$

于是

$\underset{n\to +\infty }{\mathop{\lim }}\,\left| u{{({{x}_{n}})}^{2}} \right|=0\Rightarrow \underset{n\to +\infty }{\mathop{\lim }}\,\left| u({{x}_{n}}) \right|=0$

于是存在$ [0,+\infty ) $中的子列$\{{{x}_{n}}\}_{0}^{+\infty }$,使得当$n\to +\infty $时,${{x}_{n}}\to +\infty $且$u({{x}_{n}})\to 0$

(2)由于$\int_{0}^{+\infty }{({{\left| u(x) \right|}^{2}}+{{\left| u(x) \right|}^{2}})dx}$收敛,由柯西---施瓦兹不等式可知:

$\left| {{u}^{2}}({{x}_{2}})-{{u}^{2}}({{x}_{1}}) \right|=2\int_{{{x}_{1}}}^{{{x}_{2}}}{\left| u(x)u(x) \right|}dx\le \int_{{{x}_{1}}}^{{{x}_{2}}}{({{\left| u(x) \right|}^{2}}+{{\left| u(x) \right|}^{2}})dx}\to 0({{x}_{2}}\ge {{x}_{1}}\to +\infty )$

于是由柯西收敛准则:${{u}^{2}}(x)\to 0(x\to +\infty )\Rightarrow u(x)\to 0(x\to +\infty )$

而$u(x)$在$[0,+\infty )$上连续,于是存在$M0$,使得$\left| u(x) \right|\le M$

令$C=\frac{M}{\sqrt{\int_{0}^{+\infty }{({{\left| u(x) \right|}^{2}}+{{\left| u(x) \right|}^{2}})dx}}}$

于是存在常数$C0$,使得

$\underset{x\in [0,+\infty \}}{\mathop{\sup }}\,\left| u(x) \right|\le C{{(\int_{0}^{+\infty }{({{\left| u(x) \right|}^{2}}+{{\left| {u}(x) \right|}^{2}})}dx)}^{\frac{1}{2}}}$

八、

(1)证明:由于

$\frac{\partial u}{\partial n}=\frac{\partial u}{\partial x}\cos (n,x)+\frac{\partial u}{\partial y}\cos (n,y)+\frac{\partial u}{\partial z}\cos (n,z)$

由第一型和第二型曲面积分的关系和$Guass$公式可知:

$\iint\limits_{\partial \Omega }{v\cdot \frac{\partial u}{\partial n}}dS=\iint\limits_{\partial \Omega }{v[\frac{\partial u}{\partial x}\cos (n,x)+\frac{\partial u}{\partial y}\cos (n,y)+\frac{\partial u}{\partial z}\cos (n,z)}]dS$

$=\iint\limits_{\partial \Omega }{v[\frac{\partial u}{\partial x}dydz+\frac{\partial u}{\partial y}dzdx+\frac{\partial u}{\partial z}dxdy]}$

$=\iiint_{\Omega }{v\cdot \Delta udxdydz+\iiint_{\Omega }{\nabla v\cdot \nabla udxdydz}}$

即\[\iiint_{\Omega }{v\Delta udxdydz=-}\iiint_{\Omega }{(\nabla u\cdot \nabla v)dxdydz+\iint\limits_{\partial \Omega }{v\cdot \frac{\partial u}{\partial n}}}dS\]

(2)

时间: 2024-10-07 15:52:18

华中师范大学2008年数学分析考研试题参考解答的相关文章

[家里蹲大学数学杂志]第305期华中师范大学2005年数学分析考研试题参考解答

1. ($45'=10'+10'+10'+15'$) 求下列极限或指定函数的值: (1) 求 $\dps{\vlm{n}\frac{1!+2!+\cdots+n!}{n!}}$; (2) 求 $\dps{\vlm{n}\sqrt[n]{\frac{1}{2}\cdot \frac{3}{4}\cdots \frac{5}{6}\cdots \frac{2n-1}{2n}}}$; (3) 求 $\dps{\lim_{x\to +\infty}\sez{\sex{x^3-x^2+\frac{x}{2

[家里蹲大学数学杂志]第300期华中师范大学2001年数学分析考研试题参考解答

1. ($24'$) 求下列极限 (要有主要计算步骤) (1) $\dps{\vlm{n} \sex{\cfrac{1}{n^2+n+1}+\cfrac{2}{n^2+n+2}+\cfrac{3}{n^2+n+3}+ \cdots+\cfrac{n}{n^2+n+n}}}$; (2) $\dps{\lim_{n\to\infty}\cfrac{n^n}{3^n\cdot n!}}$; (3) $\dps{\lim_{x\to 0} \cfrac{e^x-1-x}{\sqrt{1-x}-\cos\

[家里蹲大学数学杂志]第302期华中师范大学2003年数学分析考研试题参考解答

1. ($16'$) 求下列极限: (1) $\dps{\vlm{n}(n!)^\frac{1}{n^2}}$. (2) $f(x)$ 在 $[-1,1]$ 上连续, 恒不为零, 求 $\dps{\lim_{x\to 0}\frac{\sqrt[3]{1+f(x)\sin x}-1}{3^x-1}}$. 解答: (1) 由 $$\bex \frac{\ln n!}{n^2}<\frac{\ln n^n}{n^2}=\frac{\ln n}{n}\to 0\quad\sex{n\to\infty}

[家里蹲大学数学杂志]第303期华中师范大学2004年数学分析考研试题参考解答

1. ($50'=10'+10'+15'+15'+15'$) 求下列极限 (1) $\dps{\lim_{x\to 0}(\cos x)^\frac{1}{\sin^2x}}$. (2) $\dps{\vlm{n}\sqrt[n]{1+\frac{1}{2}+\frac{1}{3} +\cdots+\frac{1}{n}}}$. (3) $\dps{\lim_{x\to +\infty} x^\frac{7}{4}\sex{\sqrt[4]{x+1}+\sqrt[4]{x-1}-2\sqrt[4

华中师范大学2012年数学分析考研试题参考解答

来自xulu1352 一. (1)证明:由${{x}_{1}}=\frac{1}{2},{{x}_{2}}=\frac{3}{8},{{x}_{3}}=\frac{55}{128},\cdots $,猜测$\{{{x}_{2n+1}}\}$单调递减,$\{{{x}_{2n}}\}$单调递增 下用数归法先证$\sqrt{2}-1\le {{x}_{2n+1}}\le \frac{1}{2},\frac{3}{8}\le {{x}_{2n+1}}\le \sqrt{2}-1$ (1)当$n=1$时,

[家里蹲大学数学杂志]第307期华中师范大学2006年数学分析考研试题参考解答

1. ($30'$) 计算题. (1) $\dps{\lim_{x\to 1} \frac{\sin^2(x-1)\sin\frac{1}{x-1}}{e^{x-1}-1}}$. (2) 设 $y=x^x+a^x$, 求 $y'$. (3) $\dps{\int \sex{\ln\ln x+\frac{1}{\ln x}}\rd x}$. (4) 设 $\dps{f(x,y)=x^y+(y-1)^2\arcsin\sqrt{\frac{x}{y}}}$, 求 $f_x'(x,1)$. (5) $

[家里蹲大学数学杂志]第260期华南师范大学2013年数学分析考研试题参考解答

1已给出一个函数的表达式 $F(x)$, 其为 $f(x)$ 的原函数, 求 $\dps{\int xf(x)\rd x}$. 解答: $$\beex \bea \int xf'(x)\rd x &=\int x\rd f(x)\\ &=xf(x)-\int f(x)\rd x\\ &=xF'(x)-F(x). \eea \eeex$$ 2已知 $$\bex \sum_{i=1}^{2k}(-1)^{i-1}a_i=0. \eex$$ 试证: $$\bex \ls{n}\sum_{

兰州大学2008年数学分析考研试题参考解答

1计算. (1) \dps{\lim_{n\to\infty} \ln\sqrt[n]{\sex{1+\frac{1}{n}} \sex{1+\frac{2}{n}} \cdots \sex{1+\frac{n}{n}} }} . 解答: \bex \mbox{原式}&=&\lim_{n\to\infty} \sed{ \frac{1}{n} \sez{\ln\sex{1+\frac{1}{n}}+\cdots+\ln \sex{1+\frac{n-1}{n}}} +\frac{\ln 2

[家里蹲大学数学杂志]第258期首都师范大学2013年数学分析考研试题参考解答

1 ($3\times 5'=15'$) 求下列极限: $$\bex \lim_{x\to 0^+}\sex{\frac{\sin x}{x}}^\frac{1}{x^2};\quad \ls{n}\frac{3^n}{n!};\quad \lim_{x\to 0}\frac{\tan x-\sin x}{\sin x^3}. \eex$$ 解答: $$\beex \bea \lim_{x\to 0^+}\sex{\frac{\sin x}{x}}^\frac{1}{x^2} &=\lim_{x