01背包N

Description

Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave …  The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?

Input

The first line contain a integer T , the number of cases.  Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.

Output

One integer per line representing the maximum of the total value (this number will be less than 2 31).

Sample Input

1

5 10

1 2 3 4 5

5 4 3 2 1

Sample Output

14

思路:

状态转移方程:val[j]=max{val[j],val[j-weight[i]]+p[i]}

val[j]表示:前i个物体在容量为vol最大的装载量

源代码:

 1 #include<iostream>
 2 #include<algorithm>
 3 #include<string>
 4 #include<cstring>
 5 #include<cmath>
 6 using namespace std;
 7 #define maxn 1000+10
 8 int val[maxn], weight[maxn], p[maxn];
 9 int main()
10 {
11     int T;
12     cin >> T;
13     while (T--)
14     {
15         int n, vol;
16         cin >> n >> vol;
17         for (int i = 1; i <= n; i++)
18         {
19             cin >> p[i];
20         }
21         for (int j = 1; j <= n; j++)
22         {
23             cin >> weight[j];
24         }
25         for (int j = 0; j <= vol; j++)
26         {
27             val[j] = 0;
28         }
29         for (int i = 1; i <= n; i++)
30         {
31             for (int j = vol; j >= weight[i]; j--)
32             {
33                 val[j] = max(val[j], val[j - weight[i]] + p[i]);
34
35             }
36         }
37         cout << val[vol] << endl;
38
39     }
40        return 0;
41
42 }

心得:

背包入门~~~~理解一个方程还是挺费劲的,/(ㄒoㄒ)/~~不过终于比之前好多了。。。。给自己一个赞!不过还是觉得好神奇

(*^__^*) 嘻嘻……

时间: 2025-01-14 16:02:46

01背包N的相关文章

UVA 562 Dividing coins --01背包的变形

01背包的变形. 先算出硬币面值的总和,然后此题变成求背包容量为V=sum/2时,能装的最多的硬币,然后将剩余的面值和它相减取一个绝对值就是最小的差值. 代码: #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; #define N 50007 int c[102],d

17-又见01背包

/*                                        又见01背包时间限制:1000 ms  |  内存限制:65535 KB难度:3 描述        有n个重量和价值分别为wi 和 vi 的 物品,从这些物品中选择总重量不超过 W     的物品,求所有挑选方案中物品价值总和的最大值.    1 <= n <=100    1 <= wi <= 10^7    1 <= vi <= 100    1 <= W <= 10^

HDU - 2602 Bone Collector(01背包讲解)

题意:01背包:有N件物品和一个容量为V的背包.每种物品均只有一件.第i件物品的费用是volume[i],价值是value[i],求解将哪些物品装入背包可使价值总和最大. 分析: 1.构造二维数组:dp[i][j]---前i件物品放入一个容量为j的背包可以获得的最大价值. dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - volume[i]] + value[i]);---(a) (1)dp[i - 1][j]---不放第i件物品,因此前i件物品放入一个容量为

01背包

这里就只放自己刷的题目了,毕竟是弱弱哒 HDU2546:饭卡 1 #include <algorithm> 2 #include <cstdio> 3 4 using namespace std; 5 6 int main() 7 { 8 int n,m; 9 while (~scanf("%d", &n), n) 10 { 11 int f[2013] = {0}, menu[2013] = {0}; 12 for (int i = 1; i <

hdu 1864 01背包 最大报销额

http://acm.hdu.edu.cn/showproblem.php?pid=1864 New~ 欢迎“热爱编程”的高考少年——报考杭州电子科技大学计算机学院关于2015年杭电ACM暑期集训队的选拔 最大报销额 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 18562    Accepted Submission(s): 5459

超大背包(挑战编程之01背包)

先来温习01背包: 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2--Wn,与之相对应的价值为P1,P2--Pn. 求出获得最大价值的方案. 注意:在本题中,所有的体积值均为整数. 思路: 考虑用动态规划的方法来解决,这里的:阶段是:在前N件物品中,选取若干件物品放入背包中:状态是:在前N件物品中,选取若干件物品放入所剩空间为W的背包中的所能获得的最大价值:决策是:第N件物品放或者不放:由此可以写出动态转移方程:我们用f[i,j]表示在前 i 件物品中选择若干件放

uva10201 - Adventures in Moving - Part IV(01背包)

题目:uva10201 - Adventures in Moving - Part IV(01背包) 题目大意:一辆车要走D距离,然后它有个200L油箱,并且一开始有100L,现在给你一路上你会遇到的加油站,和这个加油站每升油的价钱,要求你最后到终点的时候油需要大于等于100L,问你加油最少的费用.如果到达不了目标地点就输出Impossible. 解题思路:首先要先到达这个加油站,然后就相当这个加油站你选不选择加油,选择加油了那么又要加多少油.dp[j][i]代表到达第i个加油站还有jL油,dp

HDU 2955 Robberies --01背包变形

这题有些巧妙,看了别人的题解才知道做的. 因为按常规思路的话,背包容量为浮点数,,不好存储,且不能直接相加,所以换一种思路,将背包容量与价值互换,即令各银行总值为背包容量,逃跑概率(1-P)为价值,即转化为01背包问题. 此时dp[v]表示抢劫到v块钱成功逃跑的概率,概率相乘. 最后从大到小枚举v,找出概率大于逃跑概率的最大v值,即为最大抢劫的金额. 代码: #include <iostream> #include <cstdio> #include <cstring>

RQNOJ 329 刘翔!加油!:01背包

题目链接:https://www.rqnoj.cn/problem/329 题意: 刘翔有n封信,每封信都有自己的欣赏价值value[i].消耗时间time[i].消耗体力h[i].和得到的鼓舞w[i]. 观看信件必须按照价值递增(大于)的顺序观看,不一定需要全看. 可是,刘翔在伤病中,时间和体力分别为t,m,同时看完之后体力不能为0. 问你受到的鼓舞最大为多少. 题解: 这道题里value[i]真的没有用... 表示状态: dp[i][j][k] = max encouraging i:考虑到

[CF837D] Round Subset(滚动数组,01背包)

题目链接:http://codeforces.com/contest/837/problem/D 题意:n个数里选k个数,使得它们的乘积末尾0个数最多. 只需要统计每个数的2和5的数量,一个作为容量,一个作为价值.f(i,k,j)表示前i个数选k个,一共有j个2的时候,5最多有几个. 外层枚举前i个数,内层做01背包就可以.但是会MLE,所以滚动数组. 特别注意的是,滚动数组在滚动的时候要拷贝整层,原因是我在更新01背包的时候没有及时复制... 还有f要注意当前层一定要从之前存在的状态更新过来,