数据聚类-----medoids

前一篇我们了解了一个最基本的 clustering 办法 k-means ,这次要说的 k-medoids 算法,其实从名字上就可以看出来,和 k-means 肯定是非常相似的。事实也确实如此,k-medoids 可以算是 k-means 的一个变种。

k-medoids 和 k-means 不一样的地方在于中心点的选取,在 k-means 中,我们将中心点取为当前 cluster 中所有数据点的平均值:

并且我们已经证明在固定了各个数据点的 assignment 的情况下,这样选取的中心点能够把目标函数 J 最小化。然而在 k-medoids 中,我们将中心点的选取限制在当前 cluster 所包含的数据点的集合中。换句话说,在 k-medoids 算法中,我们将从当前 cluster 中选取这样一个点——它到其他所有(当前 cluster 中的)点的距离之和最小——作为中心点。k-means 和 k-medoids 之间的差异就类似于一个数据样本的均值 (mean) 和中位数 (median) 之间的差异:前者的取值范围可以是连续空间中的任意值,而后者只能在给样本给定的那些点里面选。那么,这样做的好处是什么呢?
一个最直接的理由就是 k-means 对数据的要求太高了,它使用欧氏距离描述数据点之间的差异 (dissimilarity) ,从而可以直接通过求均值来计算中心点。这要求数据点处在一个欧氏空间之中。

然而并不是所有的数据都能满足这样的要求,对于数值类型的特征,比如身高,可以很自然地用这样的方式来处理,但是类别 (categorical) 类型的特征就不行了。举一个简单的例子,如果我现在要对犬进行聚类,并且希望直接在所有犬组成的空间中进行,k-means 就无能为力了,因为欧氏距离 \|x_i-x_j\|^2 在这里不能用了:一只 Samoyed 减去一只 Rough Collie 然后在平方一下?天知道那是什么!再加上一只 German Shepherd Dog 然后求一下平均值?根本没法算,k-means 在这里寸步难行!

在 k-medoids 中,我们把原来的目标函数 J 中的欧氏距离改为一个任意的 dissimilarity measure 函数

最常见的方式是构造一个 dissimilarity matrix \mathbf{D} 来代表 \mathcal{V},其中的元素 \mathbf{D}_{ij} 表示第 i 只狗和第 j 只狗之间的差异程度,例如,两只 Samoyed 之间的差异可以设为 0 ,一只 German Shepherd Dog 和一只 Rough Collie 之间的差异是 0.7,和一只 Miniature Schnauzer 之间的差异是 1 ,等等。

除此之外,由于中心点是在已有的数据点里面选取的,因此相对于 k-means 来说,不容易受到那些由于误差之类的原因产生的 Outlier 的影响,更加 robust 一些。

扯了这么多,还是直接来看看 k-medoids 的效果好了,由于 k-medoids 对数据的要求比 k-means 要低,所以 k-means 能处理的情况自然 k-medoids 也能处理,为了能先睹为快,我们偷一下懒,直接在上一篇文章中的 k-means 代码的基础上稍作一点修改,还用同样的例子。将代码的 45 到 47 行改成下面这样:

 for j in range(k):
            idx_j = (labels == j).nonzero()
            distj = distmat(X[idx_j], X[idx_j])
            distsum = ml.sum(distj, axis=1)
            icenter = distsum.argmin()
            centers[j] = X[idx_j[0][icenter]]

  可以看到 k-medoids 在这个例子上也能得到很好的结果:

而且,同 k-means 一样,运气不好的时候也会陷入局部最优解中:

如果仔细看上面那段代码的话,就会发现,从 k-means 变到 k-medoids ,时间复杂度陡然增加了许多:在 k-means 中只要求一个平均值  即可,而在 k-medoids 中则需要枚举每个点,并求出它到所有其他点的距离之和,复杂度为  。

数据聚类-----medoids

时间: 2024-10-08 05:27:28

数据聚类-----medoids的相关文章

数据聚类------GMM

我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 GMM 是学习出一些概率密度函数来(所以 GMM 除了用在 clustering 上之外,还经常被用于 density estimation ),简单地说,k-means 的结果是每个数据点被 assign 到其中某一个 cluster 了,而 GMM 则给出这些数据点被 assign 到每个 cluster 的概率,又称作 soft assignment .

R语言-混合型数据聚类

利用聚类分析,我们可以很容易地看清数据集中样本的分布情况.以往介绍聚类分析的文章中通常只介绍如何处理连续型变量,这些文字并没有过多地介绍如何处理混合型数据(如同时包含连续型变量.名义型变量和顺序型变量的数据).本文将利用 Gower 距离.PAM(partitioning around medoids)算法和轮廓系数来介绍如何对混合型数据做聚类分析. -------------------------------------------------------------------------

基于大数据聚类社群的作弊用户发现方法

前面的文章中我们讲道,像趣头条类的APP对于收徒和阅读行为给予用户现金奖励的方式势必会受到大量羊毛党黑产的注意,其实单个用户能薅到的钱是没有多少的,为了达到利益最大化,黑产肯定会利用各种手段构建大量账号来薅APP运营企业的羊毛,因为收徒的奖励远高于阅读,所以赚取收徒奖励就成了最严重的薅羊毛手段.前文提到为了更好的识别出这些异常用户,我们利用用户的师徒关系构建连通图,把同一个连通图上的用户视为一个社群,利用Spark Grahpx实现了一个简单高效的社群发现功能.具体内容可以查看上一篇文章<基于S

[译]用R语言做挖掘数据《五》

介绍 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程[Vim编辑器](http://www.shiyanlou.com/courses/2)3. R:在命令行输入‘R’进入交互式环境,下

[译]用R语言做挖掘数据《七》

时间序列与数据挖掘 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程Vim编辑器3. R:在命令行输入‘R’进入交互式环境,下面的代码都是在交互式环境运行4. 数据:在命令行终端输入以下命令:

大数据和「数据挖掘」是何关系?---来自知乎

知乎用户,互联网 244 人赞同 在我读数据挖掘方向研究生的时候:如果要描述数据量非常大,我们用Massive Data(海量数据)如果要描述数据非常多样,我们用Heterogeneous Data(异构数据)如果要描述数据既多样,又量大,我们用Massive Heterogeneous Data(海量异构数据)--如果要申请基金忽悠一笔钱,我们用Big Data(大数据) 编辑于 2014-02-2817 条评论感谢 收藏没有帮助举报作者保留权利 刘知远,NLPer 4 人赞同 我觉得 大数据

Kmeans聚类算法原理与实现

Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果. 假设要把样本集分为k个类别,算法描述如下: (1)适当选择k个类的初始中心,最初一般为随机选取: (2)在每次迭代中,对任意一个样本,分别求其到k个中心的欧式距离,将该样本归到距离最短的中心所在的类: (3)利用

离线轻量级大数据平台Spark之MLib机器学习库概念学习

Mlib机器学习库 1.1机器学习概念 机器学习有很多定义,倾向于下面这个定义.机器学习是对能通过经验自动改进的计算机算法的研究.机器学习依赖数据经验并评估和优化算法所运行出的模型.机器学习算法尝试根据训练数据使得表示算法行为的数学目标最大化,并以此来进行预测或作出决定.机器学习问题分类为几种,包括分类.回归.聚类.所有的机器学习算法都经过一条流水线:提取训练数据的特征->基于特征向量训练模型->评估模型选择最佳.特征提取主要是提取训练数据中的数值特征,用于数学建模.机器学习一般有如下分类:

BIRCH聚类算法原理

在K-Means聚类算法原理中,我们讲到了K-Means和Mini Batch K-Means的聚类原理.这里我们再来看看另外一种常见的聚类算法BIRCH.BIRCH算法比较适合于数据量大,类别数K也比较多的情况.它运行速度很快,只需要单遍扫描数据集就能进行聚类,当然需要用到一些技巧,下面我们就对BIRCH算法做一个总结. 1. BIRCH概述 BIRCH的全称是利用层次方法的平衡迭代规约和聚类(Balanced Iterative Reducing and Clustering Using H