关于串联匹配电阻其作用:

1、概述:

高速信号线中才考虑使用这样的电阻,低频情况下,一般是直接连接。这个电阻有两个作用:

阻抗匹配:因为信号源的阻抗很低,跟信号线之间阻抗不匹配,串上一个电阻后,可改善匹配情况,以减少反射,避免振荡等。

减少信号边沿的陡峭程度:可以减少信号边沿的陡峭程度,从而减少高频噪声以及过冲等。因为串联的电阻,跟信号线的分布电容以及负载的输入电容等形成一个RC

电路,这样就会降低信号边沿的陡峭程度大家知道,如果一个信号的边沿非常陡峭,含有大量的高频成分,将会辐射干扰,另外,也容易产生过冲。

2、 详述(阻抗匹配)

阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。

阻抗匹配分为低频和高频两种情况讨论。

我们先从直流电压源驱动一个负载入手,由于实际的电压源,总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:

I=U/(R+r)

可以看出,负载电阻R越小,则输出电流越大。

负载R上的电压为:

Uo=IR=U/[1+(r/R)]

负载电阻R越大,则输出电压Uo越高。

再来计算一下电阻R消耗的功率为:

P=I2×R=[U/(R+r)]2×R=U2×R/(R2+2R×r+r2)=U2×R/[(R-r)2+4×R×r]=U2/{[(R-r)2/R]+4×r}

对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。

匹配电阻下低频电路与高频电路的比较:

在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。

从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。

注:有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。

在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。

为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。

例如,常用的闭路电视同轴电缆特性阻抗为75Ω,而一些射频设备上则常用特征阻抗为50Ω的同轴电缆。另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线因为电视机的射频输入端输入阻抗为75Ω,所以300Ω的馈线将与其不能匹配实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个300Ω到75Ω的阻抗转换器(一个塑料封装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大)它里面其实就是一个传输线变压器,将300Ω的阻抗,变换成75Ω的,这样就可以匹配起来了。这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配。如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等。

当阻抗不匹配时,有哪些办法让它匹配呢?

可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。

可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。

可以考虑使用串联/并联电阻的办法,一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻。

为了帮助大家理解阻抗不匹配时的反射问题,我来举两个例子:假设你在练习拳击——打沙包如果是一个重量合适的、硬度合适的沙包,你打上去会感觉很舒服但是,如果哪一天我把沙包做了手脚,例如,里面换成了铁沙,你还是用以前的力打上去,你的手可能就会受不了了——这就是负载过重的情况,会产生很大的反弹力相反,如果我把里面换成了很轻很轻的东西,你一出拳,则可能会扑空,手也可能会受不了——这就是负载过轻的情况。

另一个例子,不知道大家有没有过这样的经历:就是看不清楼梯时上/下楼梯,当你以为还有楼梯时,就会出现“负载不匹配”这样的感觉了当然,也许这样的例子不太恰当,但我们可以拿它来理解负载不匹配时的反射情况

附:浅谈四层板和33欧电阻

选用四层板不仅是电源和地的问题,高速数字电路对走线的阻抗有要求,二层板不好控制阻抗。33欧电阻一般加在驱动器端,也是起阻抗匹配作用的;布线时要先布数据地址线,和需要保证的高速线。

在高频的时候,PCB板上的走线都要看成传输线。传输线有其特征阻抗,学过传输线理论的都知道,当传输线上某处出现阻抗突变(不匹配)时,信号通过就会发生反射,反射对原信号造成干扰,严重时就会影响电路的正常工作采用四层板时,通常外层走信号线,中间两层分别为电源和地平面,这样一方面隔离了两个信号层,更重要的是外层的走线与它们所靠近的平面形成称为“微带”(microstrip)

的传输线,它的阻抗比较固定,而且可以计算。对于两层板就比较难以做到这样。这种传输线阻抗主要与走线的宽度、到参考平面的距离、敷铜的厚度以及介电材料的特性有关,有许多现成的公式和程序可供计算。

33欧电阻通常串连放在驱动的一端(其实不一定33欧,从几欧到五、六十欧都有,视电路具体情况)

,其作用是与发送器的输出阻抗串连后与走线的阻抗匹配,使反射回来(假设解收端阻抗没有匹配)

的信号不会再次反射回去(吸收掉),这样接收端的信号就不会受到影响。接收端也可以作匹配,例如采用电阻并联,但在数字系统比较少用,因为比较麻烦,而且很多时候是一发多收,如地址总线,不如源端匹配易做。

注:这里所说的高频,不一定是时钟频率很高的电路,是不是高频不止看频率,更重要是看信号的上升下降时间。通常可以用上升(或下降)

时间估计电路的频率,一般取上升时间倒数的一半,比如如果上升时间是1ns,那么它的倒数是1000MHz,也就是说在设计电路是要按500MHz的频带来考虑。有时候要故意减慢边缘时间,许多高速IC其驱动器的输出斜率是可调的。

原文地址:https://www.cnblogs.com/liujuncheng1/p/11526635.html

时间: 2024-10-15 08:24:58

关于串联匹配电阻其作用:的相关文章

时钟信号线上串一小电阻的作用

摘自一位网友的"http://blog.chinaunix.net/uid-21977330-id-3218353.html" 这个电阻有两个作用,第一是阻抗匹配.因为信号源的阻抗很低,跟信号线之间阻抗不匹配,串上一个电阻后,可改善匹配情况,以减少反射,避免振荡等. 第二是可以减少信号边沿的陡峭程度,从而减少高频噪声以及过冲等.因为串联的电阻,跟信号线的分布电容以及负载的输入电容等形成一个RC电路,这样就会降低信号边沿的陡峭程度.大家知道,如果一个信号的边沿非常陡峭,含有大量的高频成分

电压跟随器的作用,以及其中两个电阻的作用?

电压跟随器又有输入电阻很高,输出电阻很低,起到两点作用:1 对前后电路起到隔离作用 2 提高带负载能力. 那么20k的电阻起到什么作用?1 防止输出端静电或者干扰直接传到负输入端,损坏运放2 某些情况正输入端和负输入端差压很大,如果没有这个电阻会损坏运放???? 原文地址:https://www.cnblogs.com/Rainingday/p/12633764.html

上拉电阻和下拉电阻的作用

上拉电阻是用来解决总线驱动能力不足时提供电流的问题的.一般说法是上拉增大电流,下拉电阻是用来吸收电流(抵抗干扰). 上拉是将电压拉高,下拉是将电压拉低,主要用在三极管或场管的控制极的电位,因为只有满足电压差才会工作. 上拉电阻: 下拉电阻:

阻抗匹配基础

英文名称:impedance matching 基本概念 信号传输过程中负载阻抗和信源内阻抗之间的特定配合关系.一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响.对电子设备互连来说,比如信号源连放大器,前级连后级,仅仅要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可觉得阻抗匹配良好:对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,而晶体管放大器则无此限制,能够接不论什么阻抗的音箱. 匹配条件 ①负载阻

NTC与PTC压敏电阻在电源电路中起的作用

https://wenku.baidu.com/view/e39beafdfab069dc502201f9.html 压敏电阻的作用 http://www.eepw.com.cn/article/272925.htm

上拉电阻与下拉电阻(转载)

一.定义: 上拉就是将不确定的信号通过一个电阻钳位在高电平!电阻同时起限流作用!下拉同理! 上拉是对器件注入电流,下拉是输出电流:弱强只是上拉电阻的阻值不同,没有什么严格区分:对于非集电极(或漏极)开路输 出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道. 二.上下拉电阻作用: 1.提高电压准位: a.  当 TTL 电路驱动 COMS 电路时,如果 TTL 电路输出的高电平低于 COMS 电路的最低高电平(一般为 3.5V), 这时就

0R的电阻以及NC的意义

0欧电阻的作用: 0欧的电阻大概有以下几个功能:①做为跳线使用.这样既美观,安装也方便.②在数字和模拟等混合电路中,往往要求两个地分开,并且单点连接.我们可以用一个0欧的电阻来连接这两个地,而不是直接连在一起.这样做的好处就是,地线被分成了两个网络,在大面积铺铜等处理时,就会方便得多.附带提示一下,这样的场合,有时也会用电感或者磁珠等来连接.③做保险丝用.由于PCB上走线的熔断电流较大,如果发生短路过流等故障时,很难熔断,可能会带来更大的事故.由于0欧电阻电流承受能力比较弱(其实0欧电阻也是有一

I2C上拉电阻

在一些PCB的layout中,大家往往会看到在I2C通信的接口处,往往会接入一个4.7K的电阻,有的datasheet上面明确有要求,需要接入,有的则没有要求.   I2C接口 对于单片机来讲,有些IO内部的上拉电阻可以使能,这样就省去了外部的上拉电阻,这是对于单片机带有标准I2C通信协议接口,若是只带有模拟I2C协议接口,那么就需要考虑接入上拉电阻问题.下图是摄像头进行配置通信时SCL和SDA需要进行上拉电阻的连接. 在大多数情况下,由于I2C接口采用Open Drain机制,器件本身只能输出

电感、磁珠和零欧电阻的区别

电感是储能元件,多用于电源滤波回路.LC振荡电路.中低频的滤波电路等,其应用频率范围很少超过50MHz.对电感而言,它的感抗是和频率成正比的.这可以由公式:XL = 2πfL来说明,其中XL是感抗(单位是Ω).例如:一个理想的10mH电感,在10kHz时,感抗是628Ω;在100MHz时,增加到6.2MΩ.因此在100MHz时,此电感可以视为开路(open circuit).在100MHz时,若让一个信号通过此电感,将会造成此信号品质的下降. 磁珠(ferrite bead)的材料是铁镁或铁镍合