AtCoder ABC 129F Takahashi's Basics in Education and Learning

题目链接:https://atcoder.jp/contests/abc129/tasks/abc129_f

题目大意

  给定一个长度为 L ,首项为 A,公差为 B 的等差数列 S,将这 L 个数拼起来,记作 N,求 N % M。

分析

  设 bit(i) 为第 i 项所需要进行的十进制位移。

  则 $N = S_0 * 10^{bit(0)} + S_1 * 10^{bit(1)} + \dots + S_{L - 1} * 10^{bit(L - 1)}$。

  一项一项地算是肯定要超时的,不过注意到等差数列的每一项都小于 1018 ,因此很多项的长度是相等的,也就是说有很多 bit(i) 也是等差数列。

  于是我们可以按照位数给等差数列分组,最多可分 18 组。

  举个例子,在区间 [L, R] 上,每一项长度都为 k。

  记这个区间上所表示的数为 A(k),A(k) 的每一项设为 $a_i, (L \leq i \leq R)$,则 $a_i = S_i * 10^{bit(i)}, A(k) = \sum_{i = L}^{R} a_i$。

  不难看出$A(k) = 10^{bit(L)} * \sum_{i = L}^{R} (S_i * 10^{(R - i) * k})$,只要处理后一部分即可。

  设 $ret(j) = \sum_{i = L}^{j} (S_i * 10^{(j - i) * k}), (L \leq j \leq R)$。

  则有 $ret(j + 1) = ret(j) * 10^k + S_{j + 1}$,不妨设 ret(L - 1) = 0。

  于是我们可以构造如下系数矩阵 X:

$$
X = \begin{bmatrix}
10^k & 0 & 0 \\
1 & 1 & 0 \\
0 & B & 1 \\
\end{bmatrix}
$$

  和如下矩阵 RET(j):

$$
RET(j) = \begin{bmatrix}
ret(j) & S_{j + 1} & 1
\end{bmatrix} 
$$

  于是有:

$$
RET(j) = RET(j - 1) * X \\
RET(j) = RET(L - 1) * X^{j - L + 1}
$$

  如此,通过矩阵快速幂,长度为 k 的一组值很快就被算出来了,然后每一组都分别算一下再加起来即可。

  PS:在实际实现过程中组与组之间是可以合并的,并不需要单独算出来每一组的余数,详细实现请看代码。

代码如下

  1 #include <bits/stdc++.h>
  2 using namespace std;
  3
  4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
  5 #define Rep(i,n) for (int i = 0; i < (n); ++i)
  6 #define For(i,s,t) for (int i = (s); i <= (t); ++i)
  7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i)
  8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
  9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
 10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
 11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
 12
 13 #define pr(x) cout << #x << " = " << x << "  "
 14 #define prln(x) cout << #x << " = " << x << endl
 15
 16 #define LOWBIT(x) ((x)&(-x))
 17
 18 #define ALL(x) x.begin(),x.end()
 19 #define INS(x) inserter(x,x.begin())
 20 #define UNIQUE(x) x.erase(unique(x.begin(), x.end()), x.end())
 21 #define REMOVE(x, c) x.erase(remove(x.begin(), x.end(), c), x.end()); // 删去 x 中所有 c
 22 #define TOLOWER(x) transform(x.begin(), x.end(), x.begin(),::tolower);
 23 #define TOUPPER(x) transform(x.begin(), x.end(), x.begin(),::toupper);
 24
 25 #define ms0(a) memset(a,0,sizeof(a))
 26 #define msI(a) memset(a,inf,sizeof(a))
 27 #define msM(a) memset(a,-1,sizeof(a))
 28
 29 #define MP make_pair
 30 #define PB push_back
 31 #define ft first
 32 #define sd second
 33
 34 template<typename T1, typename T2>
 35 istream &operator>>(istream &in, pair<T1, T2> &p) {
 36     in >> p.first >> p.second;
 37     return in;
 38 }
 39
 40 template<typename T>
 41 istream &operator>>(istream &in, vector<T> &v) {
 42     for (auto &x: v)
 43         in >> x;
 44     return in;
 45 }
 46
 47 template<typename T1, typename T2>
 48 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
 49     out << "[" << p.first << ", " << p.second << "]" << "\n";
 50     return out;
 51 }
 52
 53 inline int gc(){
 54     static const int BUF = 1e7;
 55     static char buf[BUF], *bg = buf + BUF, *ed = bg;
 56
 57     if(bg == ed) fread(bg = buf, 1, BUF, stdin);
 58     return *bg++;
 59 }
 60
 61 inline int ri(){
 62     int x = 0, f = 1, c = gc();
 63     for(; c<48||c>57; f = c==‘-‘?-1:f, c=gc());
 64     for(; c>47&&c<58; x = x*10 + c - 48, c=gc());
 65     return x*f;
 66 }
 67
 68 template<class T>
 69 inline string toString(T x) {
 70     ostringstream sout;
 71     sout << x;
 72     return sout.str();
 73 }
 74
 75 inline int toInt(string s) {
 76     int v;
 77     istringstream sin(s);
 78     sin >> v;
 79     return v;
 80 }
 81
 82 //min <= aim <= max
 83 template<typename T>
 84 inline bool BETWEEN(const T aim, const T min, const T max) {
 85     return min <= aim && aim <= max;
 86 }
 87
 88 typedef long long LL;
 89 typedef unsigned long long uLL;
 90 typedef pair< double, double > PDD;
 91 typedef pair< int, int > PII;
 92 typedef pair< int, PII > PIPII;
 93 typedef pair< string, int > PSI;
 94 typedef pair< int, PSI > PIPSI;
 95 typedef set< int > SI;
 96 typedef set< PII > SPII;
 97 typedef vector< int > VI;
 98 typedef vector< double > VD;
 99 typedef vector< VI > VVI;
100 typedef vector< SI > VSI;
101 typedef vector< PII > VPII;
102 typedef map< int, int > MII;
103 typedef map< int, string > MIS;
104 typedef map< int, PII > MIPII;
105 typedef map< PII, int > MPIII;
106 typedef map< string, int > MSI;
107 typedef map< string, string > MSS;
108 typedef map< PII, string > MPIIS;
109 typedef map< PII, PII > MPIIPII;
110 typedef multimap< int, int > MMII;
111 typedef multimap< string, int > MMSI;
112 //typedef unordered_map< int, int > uMII;
113 typedef pair< LL, LL > PLL;
114 typedef vector< LL > VL;
115 typedef vector< VL > VVL;
116 typedef priority_queue< int > PQIMax;
117 typedef priority_queue< int, VI, greater< int > > PQIMin;
118 const double EPS = 1e-8;
119 const LL inf = 0x7fffffff;
120 const LL infLL = 0x7fffffffffffffffLL;
121 LL mod = 1e9 + 7;
122 const int maxN = 1e5 + 7;
123 const LL ONE = 1;
124 const LL evenBits = 0xaaaaaaaaaaaaaaaa;
125 const LL oddBits = 0x5555555555555555;
126
127 struct Matrix{
128     int row, col;
129     LL MOD;
130     VVL mat;
131
132     Matrix(int r, int c, LL p = mod) : row(r), col(c), MOD(p) {
133         mat.assign(r, VL(c, 0));
134     }
135     Matrix(const Matrix &x, LL p = mod) : MOD(p){
136         mat = x.mat;
137         row = x.row;
138         col = x.col;
139     }
140     Matrix(const VVL &A, LL p = mod) : MOD(p){
141         mat = A;
142         row = A.size();
143         col = A[0].size();
144     }
145
146     // x * 单位阵
147     inline void E(int x = 1) {
148         assert(row == col);
149         Rep(i, row) mat[i][i] = x;
150     }
151
152     inline VL& operator[] (int x) {
153         assert(x >= 0 && x < row);
154         return mat[x];
155     }
156
157     inline Matrix operator= (const VVL &x) {
158         row = x.size();
159         col = x[0].size();
160         mat = x;
161         return *this;
162     }
163
164     inline Matrix operator+ (const Matrix &x) {
165         assert(row == x.row && col == x.col);
166         Matrix ret(row, col);
167         Rep(i, row) {
168             Rep(j, col) {
169                 ret.mat[i][j] = mat[i][j] + x.mat[i][j];
170                 ret.mat[i][j] %= MOD;
171             }
172         }
173         return ret;
174     }
175
176     inline Matrix operator* (const Matrix &x) {
177         assert(col == x.row);
178         Matrix ret(row, x.col);
179         Rep(k, x.col) {
180             Rep(i, row) {
181                 if(mat[i][k] == 0) continue;
182                 Rep(j, x.col) {
183                     ret.mat[i][j] += mat[i][k] * x.mat[k][j];
184                     ret.mat[i][j] %= MOD;
185                 }
186             }
187         }
188         return ret;
189     }
190
191     inline Matrix operator*= (const Matrix &x) { return *this = *this * x; }
192     inline Matrix operator+= (const Matrix &x) { return *this = *this + x; }
193
194     inline void print() {
195         Rep(i, row) {
196             Rep(j, col) {
197                 cout << mat[i][j] << " ";
198             }
199             cout << endl;
200         }
201     }
202 };
203
204 // 矩阵快速幂,计算x^y
205 inline Matrix mat_pow_mod(Matrix x, LL y) {
206     Matrix ret(x.row, x.col);
207     ret.E();
208     while(y){
209         if(y & 1) ret *= x;
210         x *= x;
211         y >>= 1;
212     }
213     return ret;
214 }
215
216 LL L, A, B, M, ans;
217
218 // 从数列第 st 项开始,查找区间 [L, R],使得区间内的所有数都小于 bit 大于等于 bit/10。
219 // 有返回 true 没有返回 false
220 LL st = 0, bit = 10, l, r;
221 bool getLR() {
222     if(st >= L || A + st * B >= bit) return false;
223     l = st;
224     r = L - 1;
225
226     while(l < r) {
227         LL mid = (l + r) >> 1;
228         if(A + mid * B < bit) l = mid + 1;
229         else r = mid;
230     }
231
232     if(A + r * B >= bit) --r;
233     l = st;
234     st = r + 1; // 下一个起始位置
235     return true;
236 }
237
238 int main(){
239     //freopen("MyOutput.txt","w",stdout);
240     //freopen("input.txt","r",stdin);
241     INIT();
242     cin >> L >> A >> B >> mod;
243
244     For(i, 1, 18) { // 枚举位数
245         if(getLR()) {
246             Matrix mat(3, 3);
247             mat[0][0] = bit % mod;
248             mat[0][1] = mat[0][2] = mat[1][2] = mat[2][1] = 0;
249             mat[1][0] = mat[1][1] = mat[2][2] = 1;
250             mat[2][1] = B % mod;
251
252             mat = mat_pow_mod(mat, r - l + 1);
253
254             Matrix ret(1, 3);
255             ret[0][0] = ans;
256             ret[0][1] = (A + l * B) % mod;
257             ret[0][2] = 1;
258
259             ret *= mat;
260
261             ans = ret[0][0];
262         }
263         bit *= 10;
264     }
265     cout << ans << endl;
266     return 0;
267 }

AtCoder ABC 129F Takahashi's Basics in Education and Learning

原文地址:https://www.cnblogs.com/zaq19970105/p/11100184.html

时间: 2024-10-08 11:07:18

AtCoder ABC 129F Takahashi's Basics in Education and Learning的相关文章

Atcoder ABC 141

Atcoder ABC 141 A - Weather Prediction SB题啊,不讲. #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> using namespace std; char ch[50]; int main() { scanf("%s",ch+1); if(ch[1] == 'S') puts("Cloudy

题解 [Atcoder ABC 161] A,B,C

题解 [Atcoder ABC 161] A,B,C A: 水题,按题意模拟即可. code: #include<bits/stdc++.h> #define ft(i,l,r) for(register int i=l;i<=r;i++) #define fd(i,r,l) for(register int i=r;i>=l;i--) using namespace std; int a,b,c; int main() { cin>>a>>b>>

AtCoder ABC 127F Absolute Minima

题目链接:https://atcoder.jp/contests/abc127/tasks/abc127_f 题目大意 初始状态下$f(x) = 0$,现在有 2 种模式的询问,第一种以“1 a b”的形式,需要进行操作$f(x) = f(x) + |x - a| + b$:第二种以“2”的形式,求使得 f(x) 取得最小值的 x 取值和 f(x) 值,如果有多个 x,输出任意一个即可. 分析 考虑第一种询问已经出现了 k 次,现在遇到第二种询问.此时$f(x) = \sum_{i = 1}^k

AtCoder ABC 130F Minimum Bounding Box

题目链接:https://atcoder.jp/contests/abc130/tasks/abc130_f 题目大意 给定地图上 N 个点的坐标和移动方向,它们会以每秒 1 个单位的速度移动,设 Ans(t) 为在 t 时刻,$(x_{max} - x_{min}) * (y_{max} - y_{min})$的值,求 Ans(t) 的最小值.(最小值可能不是一个整数) 分析 稍加思考可以发现,不是所有点的所有坐标都对答案有影响,很多点完全可以忽略不计,下面以 Y 坐标为例,讨论影响$(y_{

AtCoder ABC 154E Almost Everywhere Zero

题目链接:https://atcoder.jp/contests/abc154/tasks/abc154_e 题目大意 给定一个整数N($1 \leq N \leq 10^{100}$)和K($1 \leq K \leq 3$),求[1, N]区间内数位上只有K个非零数的整数个数. 分析 找一下规律即可,详情见代码注释. 代码如下 1 #include <bits/stdc++.h> 2 using namespace std; 3 4 /*-------------------Define

AtCoder ABC 155D Pairs

题目链接:https://atcoder.jp/contests/abc155/tasks/abc155_d 题目大意 给定$N$个整数$A_1, A_2, \dots, A_N$, 求集合$S = \{A_i * A_j | 1 \leq i, j \leq N 且 i \neq j\}$的第$K$小. 分析 首先,通过把$N$个数分为正数,负数,零,再排下序,我们可以计算$S$中所有的正数,负数以及零的数目,进而可以判断出第$K$小的数是正数,是负数,还是零. 如果第$K$小的数是零,无需多

AtCoder ABC 155F Perils in Parallel

题目链接:https://atcoder.jp/contests/abc155/tasks/abc155_f 题目大意 分析 代码如下 原文地址:https://www.cnblogs.com/zaq19970105/p/12340031.html

AtCoder ABC 157E Simple String Queries

题目链接:https://atcoder.jp/contests/abc157/tasks/abc157_e 题目大意 给定一串全由小写英文字母组成的字符串,然后顺序给出$Q$个操作,一种为替换字符串中的某个字符:另一种为查询字符串某个区间里面有多少个不同的字符.要求顺序输出第二种操作的结果. 分析 线段树单点更新,每个节点存一个32位整数,其中26位代表26个英文字母,更新的话只要节点求或就行了. 其他方法1:用26个树状数组,这个原理是一样的,但总感觉没有只用一棵线段树简明. 其他方法2:把

AtCoder ABC 158F Removing Robots

题目链接:https://atcoder.jp/contests/abc158/tasks/abc158_f 题目大意 有$N$个机器人分布在数轴上不同的位置,初始为未激活状态,作为上帝,你可以手动激活任意数量的机器人,当第$i$个机器人被激活时,它会向前走$D_i$个单位长度然后自爆,并且坐标区间在$[X_i,~Di)$上的机器人也会被激活往前走,从而触发连锁激活. 当你选定一些机器人激活后,最后剩下的机器人按编号组成集合$S$,问一共有多少个不同的集合$S$? 分析 对于每一个机器人,无非有