2.python数据结构的性能分析

2.python数据结构的性能分析

  • 一.引言

    • 现在大家对 大O 算法和不同函数之间的差异有了了解。本节的目标是告诉你 Python 列表和字典操作的 大O 性能。然后我们将做一些基于时间的实验来说明每个数据结构的花销和使用这些数据结构的好处。重要的是了解这些数据结构的效率,因为它们是本博客实现其他数据结构所用到的基础模块。本节中,我们将不会说明为什么是这个性能。在后面的博文中,你将看到列表和字典一些可能的实现,以及性能是如何取决于实现的。
  • 二.列表:
    • python 的设计者在实现列表数据结构的时候有很多选择。每一个这种选择都可能影响列表操作的性能。为了帮助他们做出正确的选择,他们查看了最常使用列表数据结构的方式,并且优化了实现,以便使得最常见的操作非常快。
    • 在列表的操作有一个非常常见的编程任务就是是增加一个列表。我们马上想到的有两种方法可以创建更长的列表,可以使用 append 方法或拼接运算符。但是这两种方法那种效率更高呢。这对你来说很重要,因为它可以帮助你通过选择合适的工具来提高你自己的程序的效率。
    • 让我们看看四种不同的方式,我们可以生成一个从0开始的n个数字的列表。首先,我们将尝试一个 for 循环并通过创建列表,然后我们将使用 append 而不是拼接。接下来,我们使用列表生成器创建列表,最后,也是最明显的方式,通过调用列表构造函数包装 range 函数。
      def test1():
          l = []
          for i in range(1000):
              l = l + [i]
      
      def test2():
          l = []
          for i in range(1000):
              l.append(i)
      
      def test3():
          l = [i for i in range(1000)]
      
      def test4():
          l = list(range(1000))
    • 下面我们来使用timeit模块来计算上述四种方式的平均运行时长是多少:
      • timeit模块:该模块可以用来测试一段python代码的执行速度/时长。
      • Timer类:该类是timeit模块中专门用于测量python代码的执行速度/时长的。原型为:class timeit.Timer(stmt=‘pass‘,setup=‘pass‘)。
      • stmt参数:表示即将进行测试的代码块语句。
      • setup:运行代码块语句时所需要的设置。
      • timeit函数:timeit.Timer.timeit(number=100000),该函数返回代码块语句执行number次的平均耗时。
      • 案例:
        from timeit import Timer
        #被测试的代码块
        def func(n):
            sum = 0
            for i in range(0,100):
                sum += i
            print(sum)
        
        if __name__ == "__main__":
            #参数2:因为参数1必须为字符串且表示的是即将被测试代码块函数的名字,因此参数2必须设置为执行参数1函数所需的设置
            t = Timer('func(10)','from __main__ import func')
            print(t.timeit(1000))
    • 使用timeit模块来计算上述四种方式的平均运行时长是多少:
      t1 = Timer("test1()", "from __main__ import test1")
      print("concat ",t1.timeit(number=1000), "milliseconds")
      t2 = Timer("test2()", "from __main__ import test2")
      print("append ",t2.timeit(number=1000), "milliseconds")
      t3 = Timer("test3()", "from __main__ import test3")
      print("comprehension ",t3.timeit(number=1000), "milliseconds")
      t4 = Timer("test4()", "from __main__ import test4")
      print("list range ",t4.timeit(number=1000), "milliseconds")
      
      concat  6.54352807999 milliseconds
      append  0.306292057037 milliseconds
      comprehension  0.147661924362 milliseconds
      list range  0.0655000209808 milliseconds
    • 注意:你上面看到的时间都是包括实际调用函数的一些开销,但我们可以假设函数调用开销在四种情况下是相同的,所以我们仍然得到的是有意义的比较。因此,拼接字符串操作需要 6.54 毫秒并不准确,而是拼接字符串这个函数需要 6.54 毫秒。你可以测试调用空函数所需要的时间,并从上面的数字中减去它。剩下的基于列表的其他操作大家也可以使用timeit进行平均耗时的测量计算。
      • 列表的相关操作的方法都是被封装好的,我们没有必要对相关操作的底层算法时间进行分析,下面直接给出大家一张基于列表操作的时间复杂度的表,供大家参考:

  • 三.字典
    • python 中第二个主要的数据结构是字典。你可能记得,字典和列表不同,你可以通过键而不是位置来访问字典中的项目。
    • 字典的时间复杂度:

原文地址:https://www.cnblogs.com/Godisgirl/p/11025890.html

时间: 2024-10-11 09:22:01

2.python数据结构的性能分析的相关文章

常用排序算法的python实现和性能分析

http://www.cnblogs.com/wiki-royzhang/p/3614694.html 一年一度的换工作高峰又到了,HR大概每天都塞几份简历过来,基本上一天安排两个面试的话,当天就只能加班干活了.趁着面试别人的机会,自己也把一些基础算法和一些面试题整了一下,可以阶段性的留下些脚印——没办法,平时太忙,基本上没有时间写博客.面试测试开发的话,这些也许能帮得上一些. 这篇是关于排序的,把常见的排序算法和面试中经常提到的一些问题整理了一下.这里面大概有3个需要提到的问题: 虽然专业是数

python数据结构的性能

2019-11-03 16:07:33 ## 对比*list*和*dict*操作 类型 list dict 索引 i key 添加 append.extend.insert d[key] = value 删除 pop.remove* pop 更新 l[i] = value d[key] = value 正查 l[i].l[i:j] d[key].copy 反查 index(value).count(value) / 其他 reverse.sort has_key.update 原则上,常用操作性

Python内置类型性能分析

timeit模块 timeit模块可以用来测试一小段Python代码的执行速度. Timer是测量小段代码执行速度的类. class timeit.Timer(stmt='pass', setup='pass', timer=<timer function>) stmt参数是要测试的代码语句(statment): setup参数是运行代码时需要的设置: timer参数是一个定时器函数,与平台有关. Timer对象.timeit(number=1000000) Timer类中测试语句执行速度的对

python数据结构与算法 38 分析树

分析树 树的结构完成以后,该是时候看看它能做点什么实事儿了.这一节里,我们研究一下分析树.分析树能够用于真实世界的结构表示,象语法或数学表达式一类的. 图1 一个简单语句的分析树 图1所示是一个简单语句的层级结构,把语句表示为树结构可以让我们用子树来分析句子的组成部分. 图2 ((7+3)?(5?2))的分析树 我们也可以把数学表达式如((7+3)?(5?2))表示为分析树,如图2.此前我们研究过完全括号表达式,这个表达式表达了什么呢?我们知道乘法的优先级比加减要高,但因为括号的关系,在做乘法之

使用 profile 进行python代码性能分析

定位程序性能瓶颈 对代码优化的前提是需要了解性能瓶颈在什么地方,程序运行的主要时间是消耗在哪里,对于比较复杂的代码可以借助一些工具来定位,python 内置了丰富的性能分析工具,如 profile,cProfile 与 hotshot 等.其中 Profiler 是 python 自带的一组程序,能够描述程序运行时候的性能,并提供各种统计帮助用户定位程序的性能瓶颈.Python 标准模块提供三种 profilers:cProfile,profile 以及 hotshot. profile 的使用

Python性能分析指南

http://www.admin10000.com/document/2861.html 尽管并非每个你写的Python程序都需要严格的性能分析,但了解一下Python的生态系统中很多优秀的在你需要做性能分析的时候可以使用的工具仍然是一件值得去做的事. 分析一个程序的性能,最终都归结为回答4个基本的问题: 程序运行速度有多快? 运行速度瓶颈在哪儿? 程序使用了多少内存? 内存泄露发生在哪里? 下面,我们将使用一些优秀的工具深入回答这些问题. 使用time工具粗糙定时 首先,我们可以使用快速然而粗

Python 性能分析入门指南

在岭南六少博客找到的好东西. 注: 本文的原作者是 Huy Nguyen ,原文地址为 A guide to analyzing Python performance 虽然并非你编写的每个 Python 程序都要求一个严格的性能分析,但是让人放心的是,当问题发生的时候,Python 生态圈有各种各样的工具可以处理这类问题. 分析程序的性能可以归结为回答四个基本问题: 正运行的多快 速度瓶颈在哪里 内存使用率是多少 内存泄露在哪里 下面,我们将用一些神奇的工具深入到这些问题的答案中去. 用 tim

Python—— 性能分析入门指南

虽然并非你编写的每个 Python 程序都要求一个严格的性能分析,但是让人放心的是,当问题发生的时候,Python 生态圈有各种各样的工具可以处理这类问题. 分析程序的性能可以归结为回答四个基本问题: 正运行的多快 速度瓶颈在哪里 内存使用率是多少 内存泄露在哪里 下面,我们将用一些神奇的工具深入到这些问题的答案中去. 用 time 粗粒度的计算时间 让我们开始通过使用一个快速和粗暴的方法计算我们的代码:传统的 unix time 工具. 1 2 3 4 $ time python yourpr

Python性能分析指南(未完成)

英文原文:http://www.huyng.com/posts/python-performance-analysis/ 译文:http://www.oschina.net/translate/python-performance-analysis 虽然你所写的每个Python程序并不总是需要严密的性能分析,但是当这样的问题出现时,如果能知道Python生态系统中的许多种工具,这样总是可以让人安心的. 分析一个程序的性能可以归结为回答4个基本的问题: 1.它运行的有多块? 2.那里是速度的瓶颈?