Python并发编程—自定义线程类

自定义线程类

1.创建步骤
【1】 继承Thread类
【2】 重写__init__方法添加自己的属性,使用super加载父类属性
【3】 重写run方法

2.使用方法
【1】 实例化对象
【2】 调用start自动执行run方法
【3】 调用join回收线程

 1 from threading import Thread
 2 from time import sleep, ctime
 3
 4
 5 class MyThread(Thread):
 6   def __init__(self, target=None,args=(), kwargs={}):
 7     super().__init__()
 8     self.target = target
 9     self.args = args
10     self.kwargs = kwargs
11
12   def run(self):
13     self.target(*self.args, **self.kwargs)
14
15
16 def player(sec, song):
17   for i in range(3):
18     print("Playing %s : %s" % (song, ctime()))
19     sleep(sec)
20
21
22 t = MyThread(target=player, args=(3,),
23              kwargs={‘song‘: ‘凉凉‘})
24 t.start()
25 t.join()

线程类

原文地址:https://www.cnblogs.com/maplethefox/p/10989201.html

时间: 2024-10-20 16:41:21

Python并发编程—自定义线程类的相关文章

Python并发编程-进程 线程 协程

一.进程 进程:就是一个程序在一个数据集上的一次动态执行过程. 进程由三部分组成: 1.程序:我们编写的程序用来描述进程要完成哪些功能以及如何完成 2.数据集:数据集则是程序在执行过程中所需要使用的资源 3.进程控制块:进程控制块用来记录进程的外部特征,描述进程的执行变化过程,系统可以利用它来控制和管理进程,它是系统感 知进程存在的唯一标志. 二.线程                                                                        

Python并发编程之线程池/进程池--concurrent.futures模块

h2 { color: #fff; background-color: #f7af0d; padding: 3px; margin: 10px 0px } 一.关于concurrent.futures模块 Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/销毁进程或者线程是非常消耗资源的,这个时候我们就要编写自己的线程池/进程池,以空间换时间.但从Python3.2开始,标准库为我们提供了conc

python并发编程之线程

一,什么是线程 如把进程比作一个运行的生产车间,那么线程就是这个车间的一条流水线.进程只是用来把资源集中到一起(进程只是一个资源单位或资源吧集合),而线程才是CPU上的执行单位 1,多线程(即多个控制线程)的概念,在一个进程中存在多个控制线程,多个控制线程共享该进程的地址空间,相当于一个车间内有多条流水线,都共用一个车间的资源. 2,进程与线程之间的关系 创建进程的开销远大于线程     进程之间是竞争关系,线程之间是协作关系 二,线程与进程之间的区别 1,线程共享创建它的进程的地址空间;进程有

python并发编程之线程(创建线程,锁(死锁现象,递归锁),GIL锁)

什么是线程 进程:资源分配单位 线程:cpu执行单位(实体),每一个py文件中就是一个进程,一个进程中至少有一个线程 线程的两种创建方式: 一 from multiprocessing import Process def f1(n): print(n,'号线程') if __name__ == '__main__': t1 = Thread(target=f1,args=(1,)) t1.start() print('主线程')  二 from threading import Thread

python网络编程基础(线程与进程、并行与并发、同步与异步)

python网络编程基础(线程与进程.并行与并发.同步与异步) 目录 线程与进程 并行与并发 同步与异步 线程与进程 进程 前言 进程的出现是为了更好的利用CPU资源使到并发成为可能. 假设有两个任务A和B,当A遇到IO操作,CPU默默的等待任务A读取完操作再去执行任务B,这样无疑是对CPU资源的极大的浪费.聪明的老大们就在想若在任务A读取数据时,让任务B执行,当任务A读取完数据后,再切换到任务A执行.注意关键字切换,自然是切换,那么这就涉及到了状态的保存,状态的恢复,加上任务A与任务B所需要的

Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池

目录 Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池 1.昨日回顾 2.死锁现象与递归锁 2.1死锁现象 2.2递归锁 3.信号量 4.GIL全局解释器锁 4.1背景 4.2为什么加锁 5.GIL与Lock锁的区别 6.验证计算密集型IO密集型的效率 6.1 IO密集型 6.2 计算密集型 7.多线程实现socket通信 7.1服务端 7.2客户端 8.进程池,线程池 Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池 1.昨日回顾 #生产者消

python-学习-python并发编程之多进程与多线程

一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程.Python提供了multiprocessing.    multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似.  multiprocessing模块的功能众多:支持子进程.通信和共享数据.执行不同形式的同步,

Python并发编程实例教程

有关Python中的并发编程实例,主要是对Threading模块的应用,文中自定义了一个Threading类库. 一.简介 我们将一个正在运行的程序称为进程.每个进程都有它自己的系统状态,包含内存状态.打开文件列表.追踪指令执行情况的程序指针以及一个保存局部变量的调用栈.通常情况下,一个进程依照一个单序列控制流顺序执行,这个控制流被称为该进程的主线程.在任何给定的时刻,一个程序只做一件事情. 一个程序可以通过Python库函数中的os或subprocess模块创建新进程(例如os.fork()或

Python并发编程系列之多线程

1引言 2 创建线程 2.1 函数的方式创建线程 2.2 类的方式创建线程 3 Thread类的常用属性和方法 3.1 守护线程:Deamon 3.2 join()方法 4 线程间的同步机制 4.1 互斥锁:Lock 4.2 递归锁:RLock 4.3 Condition 4.4 信号量:Semaphore 4.5 事件:Event 4.6 定时器:Timer 5 线程间的通行 5.1队列:Queue 6 线程池 7 总结 1 引言 上一篇博文详细总结了Python进程的用法,这一篇博文来所以说