7正则表达式

在前面我们已经搞定了怎样获取页面的内容,不过还差一步,这么多杂乱的代码夹杂文字我们怎样把它提取出来整理呢?下面就开始介绍一个十分强大的工具,正则表达式!

1.了解正则表达式

正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑。

正则表达式是用来匹配字符串非常强大的工具,在其他编程语言中同样有正则表达式的概念,Python同样不例外,利用了正则表达式,我们想要从返回的页面内容提取出我们想要的内容就易如反掌了。

正则表达式的大致匹配过程是:
1.依次拿出表达式和文本中的字符比较,
2.如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败。
3.如果表达式中有量词或边界,这个过程会稍微有一些不同。

2.正则表达式的语法规则

下面是Python中正则表达式的一些匹配规则,图片资料来自CSDN

3.正则表达式相关注解

(1)数量词的贪婪模式与非贪婪模式

正则表达式通常用于在文本中查找匹配的字符串。Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字 符;非贪婪的则相反,总是尝试匹配尽可能少的字符。例如:正则表达式”ab*”如果用于查找”abbbc”,将找到”abbb”。而如果使用非贪婪的数量 词”ab*?”,将找到”a”。

注:我们一般使用非贪婪模式来提取。

(2)反斜杠问题

与大多数编程语言相 同,正则表达式里使用”\”作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符”\”,那么使用编程语言表示的正则表达式里将需要4个反 斜杠”\\\\”:前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。

Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r”\\”表示。同样,匹配一个数字的”\\d”可以写成r”\d”。有了原生字符串,妈妈也不用担心是不是漏写了反斜杠,写出来的表达式也更直观勒。

4.Python Re模块

Python 自带了re模块,它提供了对正则表达式的支持。主要用到的方法列举如下

#返回pattern对象
re.compile(string[,flag])  
#以下为匹配所用函数
re.match(pattern, string[, flags])
re.search(pattern, string[, flags])
re.split(pattern, string[, maxsplit])
re.findall(pattern, string[, flags])
re.finditer(pattern, string[, flags])
re.sub(pattern, repl, string[, count])
re.subn(pattern, repl, string[, count])

在介绍这几个方法之前,我们先来介绍一下pattern的概念,pattern可以理解为一个匹配模式,那么我们怎么获得这个匹配模式呢?很简单,我们需要利用re.compile方法就可以。例如

pattern = re.compile(r‘hello‘)

另外大家可能注意到了另一个参数 flags,在这里解释一下这个参数的含义:

参数flag是匹配模式,取值可以使用按位或运算符’|’表示同时生效,比如re.I | re.M。

可选值有:

  re.I(全拼:IGNORECASE): 忽略大小写(括号内是完整写法,下同)
  re.M(全拼:MULTILINE): 多行模式,改变‘^‘和‘$‘的行为(参见上图)
  re.S(全拼:DOTALL): 点任意匹配模式,改变‘.‘的行为
  re.L(全拼:LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
  re.U(全拼:UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
  re.X(全拼:VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。

注:以下七个方法中的flags同样是代表匹配模式的意思,如果在pattern生成时已经指明了flags,那么在下面的方法中就不需要传入这个参数了。

(1)re.match(pattern, string[, flags])

这个方法将会从string(我们要匹配的字符串)的开头开始,尝试匹配pattern,一直向后匹配,如果遇到无法匹配的字符,立即返回 None,如果匹配未结束已经到达string的末尾,也会返回None。两个结果均表示匹配失败,否则匹配pattern成功,同时匹配终止,不再对 string向后匹配。下面我们通过一个例子理解一下

__author__ = ‘CQC‘
# -*- coding: utf-8 -*-
#导入re模块
import re
# 将正则表达式编译成Pattern对象,注意hello前面的r的意思是“原生字符串”
pattern = re.compile(r‘hello‘)
# 使用re.match匹配文本,获得匹配结果,无法匹配时将返回None
result1 = re.match(pattern,‘hello‘)
result2 = re.match(pattern,‘helloo CQC!‘)
result3 = re.match(pattern,‘helo CQC!‘)
result4 = re.match(pattern,‘hello CQC!‘)
#如果1匹配成功
if result1:
    # 使用Match获得分组信息
    print result1.group()
else:
    print ‘1匹配失败!‘
#如果2匹配成功
if result2:
    # 使用Match获得分组信息
    print result2.group()
else:
    print ‘2匹配失败!‘
#如果3匹配成功
if result3:
    # 使用Match获得分组信息
    print result3.group()
else:
    print ‘3匹配失败!‘
#如果4匹配成功
if result4:
    # 使用Match获得分组信息
    print result4.group()
else:
    print ‘4匹配失败!‘

运行结果

hello
hello
3匹配失败!
hello

匹配分析

1.第一个匹配,pattern正则表达式为’hello’,我们匹配的目标字符串string也为hello,从头至尾完全匹配,匹配成功。

2.第二个匹配,string为helloo CQC,从string头开始匹配pattern完全可以匹配,pattern匹配结束,同时匹配终止,后面的o CQC不再匹配,返回匹配成功的信息。

3.第三个匹配,string为helo CQC,从string头开始匹配pattern,发现到 ‘o’ 时无法完成匹配,匹配终止,返回None

4.第四个匹配,同第二个匹配原理,即使遇到了空格符也不会受影响。

我们还看到最后打印出了result.group(),这个是什么意思呢?下面我们说一下关于match对象的的属性和方法
Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。

属性:
1.string: 匹配时使用的文本。
2.re: 匹配时使用的Pattern对象。
3.pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
4.endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
5.lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
6.lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。

方法:
1.group([group1, …]):
获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
2.groups([default]):
以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
3.groupdict([default]):
返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
4.start([group]):
返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
5.end([group]):
返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
6.span([group]):
返回(start(group), end(group))。
7.expand(template):
将匹配到的分组代入template中然后返回。template中可以使用\id或\g、\g引用分组,但不能使用编号0。\id与\g是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符’0’,只能使用\g0。

下面我们用一个例子来体会一下

# -*- coding: utf-8 -*-
#一个简单的match实例

import re

# 匹配如下内容:单词+空格+单词+任意字符
m = re.match(r‘(\w+) (\w+)(?P.*)‘, ‘hello world!‘)

print "m.string:", m.string
print "m.re:", m.re
print "m.pos:", m.pos
print "m.endpos:", m.endpos
print "m.lastindex:", m.lastindex
print "m.lastgroup:", m.lastgroup
print "m.group():", m.group()
print "m.group(1,2):", m.group(1, 2)
print "m.groups():", m.groups()
print "m.groupdict():", m.groupdict()
print "m.start(2):", m.start(2)
print "m.end(2):", m.end(2)
print "m.span(2):", m.span(2)
print r"m.expand(r‘\g \g\g‘):", m.expand(r‘\2 \1\3‘)

### output ###
# m.string: hello world!
# m.re: 
# m.pos: 0
# m.endpos: 12
# m.lastindex: 3
# m.lastgroup: sign
# m.group(1,2): (‘hello‘, ‘world‘)
# m.groups(): (‘hello‘, ‘world‘, ‘!‘)
# m.groupdict(): {‘sign‘: ‘!‘}
# m.start(2): 6
# m.end(2): 11
# m.span(2): (6, 11)
# m.expand(r‘\2 \1\3‘): world hello!

(2)re.search(pattern, string[, flags])

search方法与match方法极其类似,区别在于match()函数只检测re是不是在string的开始位置匹配,search()会扫描整个string查找匹配,match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功的话,match()就返回None。同样,search方法的返回对象同样match()返回对象的方法和属性。我们用一个例子感受一下

#导入re模块
import re
# 将正则表达式编译成Pattern对象
pattern = re.compile(r‘world‘)
# 使用search()查找匹配的子串,不存在能匹配的子串时将返回None
# 这个例子中使用match()无法成功匹配
match = re.search(pattern,‘hello world!‘)
if match:
    # 使用Match获得分组信息
    print match.group()
### 输出 ###
# world

(3)re.split(pattern, string[, maxsplit])

按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。我们通过下面的例子感受一下。

import re
pattern = re.compile(r‘\d+‘)
print re.split(pattern,‘one1two2three3four4‘)
### 输出 ###
# [‘one‘, ‘two‘, ‘three‘, ‘four‘, ‘‘]

Python


1

2

3

4

5

6

7


import re

pattern = re.compile(r‘\d+‘)

print re.split(pattern,‘one1two2three3four4‘)

### 输出 ###

# [‘one‘, ‘two‘, ‘three‘, ‘four‘, ‘‘]

(4)re.findall(pattern, string[, flags])

搜索string,以列表形式返回全部能匹配的子串。我们通过这个例子来感受一下

import re
pattern = re.compile(r‘\d+‘)
print re.findall(pattern,‘one1two2three3four4‘)
### 输出 ###
# [‘1‘, ‘2‘, ‘3‘, ‘4‘]

Python


1

2

3

4

5

6

7


import re

pattern = re.compile(r‘\d+‘)

print re.findall(pattern,‘one1two2three3four4‘)

### 输出 ###

# [‘1‘, ‘2‘, ‘3‘, ‘4‘]

(5)re.finditer(pattern, string[, flags])

搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。我们通过下面的例子来感受一下

import re
pattern = re.compile(r‘\d+‘)
for m in re.finditer(pattern,‘one1two2three3four4‘):
    print m.group(),
### 输出 ###
# 1 2 3 4

Python


1

2

3

4

5

6

7

8


import re

pattern = re.compile(r‘\d+‘)

for m in re.finditer(pattern,‘one1two2three3four4‘):

print m.group(),

### 输出 ###

# 1 2 3 4

(6)re.sub(pattern, repl, string[, count])

使用repl替换string中每一个匹配的子串后返回替换后的字符串。
当repl是一个字符串时,可以使用\id或\g、\g引用分组,但不能使用编号0。
当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
count用于指定最多替换次数,不指定时全部替换。

import re
pattern = re.compile(r‘(\w+) (\w+)‘)
s = ‘i say, hello world!‘
print re.sub(pattern,r‘\2 \1‘, s)
def func(m):
    return m.group(1).title() + ‘ ‘ + m.group(2).title()
print re.sub(pattern,func, s)
### output ###
# say i, world hello!
# I Say, Hello World!

(7)re.subn(pattern, repl, string[, count])

返回 (sub(repl, string[, count]), 替换次数)。

import re
pattern = re.compile(r‘(\w+) (\w+)‘)
s = ‘i say, hello world!‘
print re.subn(pattern,r‘\2 \1‘, s)
def func(m):
    return m.group(1).title() + ‘ ‘ + m.group(2).title()
print re.subn(pattern,func, s)
### output ###
# (‘say i, world hello!‘, 2)
# (‘I Say, Hello World!‘, 2)

5.Python Re模块的另一种使用方式

在上面我们介绍了7个工具方法,例如match,search等等,不过调用方式都是 re.match,re.search的方式,其实还有另外一种调用方式,可以通过pattern.match,pattern.search调用,这样 调用便不用将pattern作为第一个参数传入了,大家想怎样调用皆可。

函数API列表

 match(string[, pos[, endpos]]) | re.match(pattern, string[, flags])
 search(string[, pos[, endpos]]) | re.search(pattern, string[, flags])
 split(string[, maxsplit]) | re.split(pattern, string[, maxsplit])
 findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags])
 finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags])
 sub(repl, string[, count]) | re.sub(pattern, repl, string[, count])
 subn(repl, string[, count]) |re.sub(pattern, repl, string[, count])

具体的调用方法不必详说了,原理都类似,只是参数的变化不同。小伙伴们尝试一下吧~

小伙伴们加油,即使这一节看得云里雾里的也没关系,接下来我们会通过一些实战例子来帮助大家熟练掌握正则表达式的。

时间: 2024-10-15 12:04:49

7正则表达式的相关文章

【Linux系列】【基础版】第四章 Shell基础之正则表达式

4. Shell基础之正则表达式     4.1 正则就是一串有规律的字符串         4.1 grep              4.1.1 格式: grep [-cinrvABC] 'word' filename             4.1.2 -c //count,表示行数             4.1.3 -i //不区分大小写             4.1.4 -n  //显示行号             4.1.5 -r  //遍历所有子目录             4

正则表达式中的逆向思维

人们的正常思维都是顺向的,那么逆向思维呢,特别是初学正则表达式的同学们,好不容易掌握了正则表达式的用法,再突然要你用逆向思维做题,会有很多不适应: 这里拿三道题,来做简单介绍: 1.经典例题取IP: [[email protected] ~]# ifconfig eth0|sed -nr '2s#^[^0-9]+(.*)[a-Z]{5,}.*#\1#gp' 10.0.0.200 2.调换/etc/passwd中最后一列和第一列的位置: [[email protected] ~]# head /p

JAVA正则表达式:Pattern类与Matcher类详解(转)

java.util.regex是一个用正则表达式所订制的模式来对字符串进行匹配工作的类库包.它包括两个类:Pattern和Matcher Pattern 一个Pattern是一个正则表达式经编译后的表现模式. Matcher 一个Matcher对象是一个状态机器,它依据Pattern对象做为匹配模式对字符串展开匹配检查. 首先一个Pattern实例订制了一个所用语法与PERL的类似的正则表达式经编译后的模式,然后一个Matcher实例在这个给定的Pattern实例的模式控制下进行字符串的匹配工作

前端学PHP之正则表达式函数

前面的话 正则表达式不能独立使用,它只是一种用来定义字符串的规则模式,必须在相应的正则表达式函数中应用,才能实现对字符串的匹配.查找.替换及分割等操作.前面介绍了正则表达式的基础语法,本文将详细介绍正则表达式函数 匹配与查找 [preg_match()] preg_match()函数用来执行一个正则表达式匹配,搜索subject与pattern给定的正则表达式的一个匹配.返回pattern的匹配次数.它的值将是0次(不匹配)或1次,因为preg_match()在第一次匹配后将会停止搜索.preg

正则表达式

grep命令和正则表达式 一. 正则 : 正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符.及这些特定字符的组合,组成一个"规则字符串",这个"规则字符串"用来表达对字符串的一种过滤逻辑.给定一个正则表达式和另一个字符串,我们可以达到如下的目的:1. 给定的字符串是否符合正则表达式的过滤逻辑(称作"匹配"):2. 可以通过正则表达式,从字符串中获取我们想要的特定部分. 正则表达式和通配符一样,也是一组特殊符号,通配符是由sh

java中的正则表达式

正则表达式 : 正则表达式(regular expression)描述了一种字符串匹配的模式(pattern),可以用来检查一个串是否含有某种子串.将匹配的子串替换或者从某个串中取出符合某个条件的子串等. 一些字符所代表的意思: \        将下一字符标记为特殊字符.文本.反向引用或八进制转义符^       匹配输入字符串开始的位置$       匹配输入字符串结尾的位置.        匹配任何单个字符\s      空白(空格符.换行符.回车符.制表符)\S     非空白[]  

Python 正则表达式相关问题

这几天学习python,写正则表达式相关代码如下: import re print(re.search(r'(?<=<(\w+)>).*(?=<\/\1>)',"<b>ewuiiriur</b>sdksfkj").span()) 报错如下: raise error("look-behind requires fixed-width pattern")sre_constants.error: look-behind

7.python之正则表达式re模块

一.re模块的常用方法: re.findall() 用于返回一个字符串中,所有能被正则表达式所匹配到的字符串,以列表的方式返回. 用法re.findall(正则表达式,字符串). s1 = "sadjhjafdsajkhjsdaysadsadduayu" 比如说,想要从上面这一长串字符串中,匹配出a后面有一个任一字符在紧接着一个字母u的字符串. print re.findall('a.u',s1) >>>['ayu'] re.finditer()作用和findall一

JS中有关正则表达式的一些常见应用

总所周知,正则表达式主要用于字符串处理.表单验证等,简单的代码量实现复杂的功能 1.身份证号码的一个校验 先做一个简单的位数校验来判断身份证的合法性:(15位数字或18位数字或17位数字加X|x) var reg=/(^\d{15}$)|(^\d{18}$)|(^\d{17}(^\d|X|x)$)/ if(reg.test(num) === false){ alert("你输入的身份证不合法"); return false; } 18位=前六位地区+中八位出生日期+后4位顺序号(最后一

4-4 grep及正则表达式

1. grep:Globally search a Regular Expression and Print:根据模式搜索文本,并将符合模式的文本行显示出来 pattern:文本字符和正则表达式的元字符 一般查询 其中 -i:忽略大小写 --color: 另外,删掉alias,是以如下格式 -v:显示没有被模式匹配的行 -o:只显示被模式匹配到的字符串 2. 正则表达式:regular expression,简称REGXP 3. 位置锚空 ^: 锚空行道,此字符后的任意内容必须出现在行首 $: