Time Limit: 12000MS | Memory Limit: 65536KB | 64bit IO Format: %I64d & %I64u |
Description
An array of size n ≤ 10 6 is given to you. There is a sliding window of size
k which is moving from the very left of the array to the very right. You can only see the
k numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example:
The array is
[1 3 -1 -3 5 3 6 7], and k is 3.
Window position | Minimum value | Maximum value |
---|---|---|
[1 3 -1] -3 5 3 6 7 | -1 | 3 |
1 [3 -1 -3] 5 3 6 7 | -3 | 3 |
1 3 [-1 -3 5] 3 6 7 | -3 | 5 |
1 3 -1 [-3 5 3] 6 7 | -3 | 5 |
1 3 -1 -3 [5 3 6] 7 | 3 | 6 |
1 3 -1 -3 5 [3 6 7] | 3 | 7 |
Your task is to determine the maximum and minimum values in the sliding window at each position.
Input
The input consists of two lines. The first line contains two integers
n and k which are the lengths of the array and the sliding window. There are
n integers in the second line.
Output
There are two lines in the output. The first line gives the minimum values in the window at each position, from left to right, respectively. The second line gives the maximum values.
Sample Input
8 3 1 3 -1 -3 5 3 6 7
Sample Output
-1 -3 -3 -3 3 3 3 3 5 5 6 7
题意:有n个数,每次从左到右选取k个数,第一行选取每个区间中的最小值输出,第二行每次选取区间中的最大值输出。
分析:RMQ求解。题目数据量比较大,如果用一般的二维数组显然是要MLE的,由于此题是固定的区间长度,所以只要用一维数组即可,第二维可以省略。
题目链接:http://poj.org/problem?id=2823
代码清单:
#include<set> #include<map> #include<cmath> #include<queue> #include<stack> #include<ctime> #include<cstdio> #include<string> #include<cctype> #include<cstring> #include<cstdlib> #include<iostream> #include<algorithm> using namespace std; typedef long long ll; typedef unsigned int uint; typedef unsigned long long ull; const int maxn = 1e6 + 5; int n,k; int a[maxn]; int minq[maxn]; int maxq[maxn]; void input(){ scanf("%d%d",&n,&k); for(int i=1;i<=n;i++) scanf("%d",&a[i]); } void RMQ_ST(){ int L=(int)((log(k*1.0))/(log(2.0))); for(int i=1;i<=n;i++) minq[i]=maxq[i]=a[i]; for(int j=1;j<=L;j++){ for(int i=1;i+(1<<j)-1<=n;i++){ minq[i]=min(minq[i],minq[i+(1<<(j-1))]); maxq[i]=max(maxq[i],maxq[i+(1<<(j-1))]); } } } void solve(){ RMQ_ST(); int mi=(int)((log(k*1.0))/(log(2.0))); for(int i=1;i+k-1<=n;i++){ printf("%d%c",min(minq[i],minq[i+k-(1<<mi)]),i+k-1==n?'\n':' '); } for(int i=1;i+k-1<=n;i++){ printf("%d%c",max(maxq[i],maxq[i+k-(1<<mi)]),i+k-1==n?'\n':' '); } } int main(){ input(); solve(); return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。