hdu 2521 一卡通大冒险 (斯特灵数,贝尔数)

/*
将N张卡分成若干个集合,集合不为空,有多少种分法。
f[n][m]表示n张卡分成m组的种类数,那么f[n][m]=f[n-1][m-1]+f[n-1][m]*m,//第二类斯特灵数
而ans[n]=sum{f[n][l]}(1<=l<=m)。//ans为贝尔数,Bell数是将P个元素集合分到非空且不可区分例子的划分个数。
其中:f[n-1][m-1]代表第n个人自成一堆;
f[n-1][m]*m代表第n个人不自成一堆。
*/
# include <stdio.h>
# include <algorithm>
# include <string.h>
using namespace std;
int f[2011][2011];
int main()
{
    int i,l;
    int t,n;
    int ans[2011];
    f[1][1]=1;
    ans[1]=1;
    for(i=2;i<=2000;i++)
    {
        f[i][1]=1;//i张卡在一本书里
        f[i][i]=1;//i张卡在i本书里
        ans[i]=2;//上面;两种情况
        for(l=2;l<i;l++)
        {
            f[i][l]=f[i-1][l-1]+f[i-1][l]*l;
            f[i][l]%=1000;
            ans[i]=(ans[i]+f[i][l])%1000;
        }
    }
    while(~scanf("%d",&t))
    {
        while(t--)
        {
            scanf("%d",&n);
            printf("%d\n",ans[n]);
        }
    }
    return 0;
}

时间: 2024-10-20 19:32:57

hdu 2521 一卡通大冒险 (斯特灵数,贝尔数)的相关文章

hdu 2512 一卡通大冒险(第二类斯特林数)

递推思路如下,i张卡片分成j堆,那么分为两种情况:第i张卡片自成一堆或没有自成一堆. 那么自成一堆的话就是dp[i-1][j-1]种情况 不自成一堆的话就是就能在j堆种任意挑一堆放入,所以有dp[i-1][j]*j种情况 综上,如下: dp[i][j]=dp[i-1][j]*j+dp[i-1][j-1]. 关于第二类斯特林数,百度就好. 具体代码 #include <iostream> using namespace std; int dp[2005][2005]; int main() {

HDU 2512 一卡通大冒险

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2512 Problem Description 因为长期钻研算法, 无暇顾及个人问题,BUAA ACM/ICPC 训练小组的帅哥们大部分都是单身.某天,他们在机房商量一个绝妙的计划"一卡通大冒险".这个计划是由wf最先提出来的,计划的内容是,把自己的联系方式写在校园一卡通的背面,然后故意将自己的卡"遗失"在某处(如水房,TD,食堂,主M....)他们希望能有MM看到他们

HDU 2512 一卡通大冒险(dp)

一卡通大冒险 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2137    Accepted Submission(s): 1430 Problem Description 因为长期钻研算法, 无暇顾及个人问题,BUAA ACM/ICPC 训练小组的帅哥们大部分都是单身.某天,他们在机房商量一个绝妙的计划"一卡通大冒险".这个

杭电 2512 一卡通大冒险

一卡通大冒险 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s):     Accepted Submission(s): Problem Description 因为长期钻研算法, 无暇顾及个人问题,BUAA ACM/ICPC 训练小组的帅哥们大部分都是单身.某天,他们在机房商量一个绝妙的计划"一卡通大冒险".这个计划是由wf最先

HDU2512 一卡通大冒险【斯特灵数,贝尔数】

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2512 题目大意: 有N张卡,将N张卡分成若干不同的集合,集合不能为空.问:总共有多少种分法. 思路: 参考博文:http://blog.csdn.net/acm_cxlove/article/details/7857671 集合的个数可以为1.2.3.-.N.问题就变为了把N张卡放到i个集合中. 这时候个组合问题,可以用第二类斯特灵数解决. S(P,K) = S(P-1,K-1) + K*S(P-

dp 斯特林数 HDU2512一卡通大冒险

这道题其实就是斯特林数,找不同的集合,一共有多少中组法,递推式就是dp[n][k] = dp[n - 1][k - 1] + k * dp[n - 1][k]; 这个式子可以这么解释,dp[n][k]就是总数为n分成k个集合一共有多少种, 它就有两种情况一种是第一个自己一个集合(也就是他自己一堆), 那么这种情况下的种类就是dp[n - 1][k - 1],就是剩下的n -1 个有k -1堆, 还有一种就是先把第一个拿出来,然后将剩下的n- 1个分成k个集合, 然后再把第一个随便放入一个, 但是

HDU 2512 贝尔数

一卡通大冒险 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1356    Accepted Submission(s): 890 Problem Description 因为长期钻研算法, 无暇顾及个人问题,BUAA ACM/ICPC 训练小组的帅哥们大部分都是单身.某天,他们在机房商量一个绝妙的计划"一卡通大冒险".这个计

UVA 10844 - Bloques (第二类斯特灵数)

UVA 10844 - Bloques 题目链接 题意:给定n个数字,问这n个数字能分成子集分成有几种分法 思路:一开始先想了个状态,dp[i][j]表示放i个数字,分成j个集合的方案,那么转移为,从dp[i - 1][j - 1]在多一个集合,和从dp[i - 1][j]有j个位置放,那么转移方程为dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j] * j;按理说这个状态转移是没问题的,但是由于这题答案是高精度,n为900时答案高达1700多位,加上高精度运算

挑战程序设计竞赛 划分数,贝尔数,斯特灵数

斯特灵数:把n个数划分为恰好k个非空集合的个数,记为S(n,k).且有:S(n,1)=S(n,n)=1. 有递推关系式: S(n+1,k)=S(n,k?1)+kS(n,k?1) 贝儿数:把n个数划分为非空集合的所有划分数.有: Bn=∑i=0nS(n,i) 贝尔数的递推公式: Bn=∑k=0n(nk)Bk 书上的划分数:书上求的是:把n个相同的数划分为不超过m个集合的方法总数.由于这n个数是相同的,就不能算作∑ki=0S(n,i).书上给了这样一个dp的转移方程(定义dp[i][j]为j个数的i