BZOJ 1046: [HAOI2007]上升序列 LIS -dp

1046: [HAOI2007]上升序列

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 3438  Solved: 1171
[Submit][Status][Discuss]

Description

对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax2 < … < axm)。那么就称P为S的一个上升序列。如果有多个P满足条件,那么我们想求字典序最小的那个。任务给出S序列,给出若干询问。对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先x1最小,如果不唯一,再看x2最小……),如果不存在长度为Li的上升序列,则打印Impossible.

Input

第一行一个N,表示序列一共有N个元素第二行N个数,为a1,a2,…,an 第三行一个M,表示询问次数。下面接M行每行一个数L,表示要询问长度为L的上升序列。

Output

对于每个询问,如果对应的序列存在,则输出,否则打印Impossible.

Sample Input

6
3 4 1 2 3 6
3
6
4
5

Sample Output

Impossible
1 2 3 6
Impossible

HINT

数据范围

N<=10000

M<=1000

Source

题解:

我们建立P[i] 表示 从i位置开始到n位置的最长上升子序列数

 这个就是A数组反过来求一遍就好了

//meek///#include<bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <stack>
#include <sstream>
#include <vector>
using namespace std ;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back
#define fi first
#define se second
#define MP make_pair
typedef long long ll;

const int N = 100005;
const int inf = 99999999;
const int mod= 1000000007;

int p[N],a[N],b[N],n,dp[N];
int main() {
    scanf("%d",&n);
    for(int i=1;i<=n;i++) {
        scanf("%d",&a[i]);
        b[n-i+1] = -a[i];
    }
    fill(dp+1,dp+n+1,inf);
    for(int i=1;i<=n;i++) {
        int tmp=lower_bound(dp+1,dp+n+1,b[i])-dp;
        p[n-i+1] = tmp;
        dp[tmp] = b[i];
    }
    //for(int i=1;i<=n;i++) cout<<p[i]<<" ";
    int L = lower_bound(dp+1,dp+n+1,inf) - dp;
    L--;
    int m,x;
    scanf("%d",&m);
    while(m--) {
        scanf("%d",&x);
        if(x>L) {
            cout<<"Impossible"<<endl;
            continue;
        }
        int last=-1;
        for(int i=1;i<=n;i++) {
            if(p[i] >= x && a[i] > last) {
                printf("%d",a[i]);last = a[i];
                if(!(--x)) {
                    cout<<endl;
                    break;
                }cout<<" ";
            }
        }
    }
    return 0;
}

代码

时间: 2024-10-11 03:41:31

BZOJ 1046: [HAOI2007]上升序列 LIS -dp的相关文章

BZOJ 1046: [HAOI2007]上升序列(LIS)

题目挺坑的..但是不难.先反向做一次最长下降子序列.然后得到了d(i),以i为起点的最长上升子序列,接下来贪心,得到字典序最小. ------------------------------------------------------------------- #include<cstdio> #define rep(i,n) for(int i=0;i<n;++i) using namespace std; const int maxn=10005; const int inf=0

[BZOJ 1046] [HAOI2007] 上升序列 【DP】

题目链接:BZOJ - 1046 题目分析 先倒着做最长下降子序列,求出 f[i],即以 i 为起点向后的最长上升子序列长度. 注意题目要求的是 xi 的字典序最小,不是数值! 如果输入的 l 大于最长上升子序列长度,输出 Impossible. 否则,从 1 向 n 枚举,贪心,如果 f[i] >= l,就选取 a[i],同时 --l,然后继续向后找比 a[i] 大的第一个数判断是否 f[i] >= l (这时l已经减小了1). 代码 #include <iostream> #i

bzoj 1046: [HAOI2007]上升序列【dp+二分】

先从后到前做一个最长下降子序列的dp,记录f[i],我这里用的是二分(其实树状数组比较显然) 然后对于询问,超出最长上升子序列的直接输出:否则从前到后扫,f[i]>=x&&a[i]>la(上个选的)就选,因为这时第一个出现的一定是符合条件的中最小的最小的 #include<iostream> #include<cstdio> using namespace std; const int N=10005; int n,a[N],m,x,f[N],p[N],

bzoj 1046 : [HAOI2007]上升序列 dp

题目链接 1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3620  Solved: 1236[Submit][Status][Discuss] Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax2 < … < axm).那么就称P为S的一个上升序列

BZOJ 1046 [HAOI2007]上升序列

题解:f[i]表示以i开头的最长上升子序列长度 贪心先选下标最小的符合要求的元素 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int maxn=10009; int n,T; int maxlen; int a[maxn]; int b[maxn],nn; int c[maxn]; int lowbit

【BZOJ】1046 : [HAOI2007]上升序列

1046: [HAOI2007]上升序列 题意:给定S={a1,a2,a3,…,an}问是否存在P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax2 < … < axm),若存在多组符合长度为m的递增子序列,则输出以序号字典序最小的:并非是数值 Sample Input 6 3 4 1 2 3 6 3 6 4 5 Sample Output Impossible 1 2 3 6 Impossible 数据范围 N&

【BZOJ 1046】 1046: [HAOI2007]上升序列

1046: [HAOI2007]上升序列 Description 对于一个给定的S={a1,a2,a3,-,an},若有P={ax1,ax2,ax3,-,axm},满足(x1 < x2 < - < xm)且( ax1 < ax2 < - < axm).那么就称P为S的一个上升序列.如果有多个P满足条件,那么我们想求字典序最小的那个.任务给出S序列,给出若干询问.对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先x1最小,如果不唯一,再看x2

1046: [HAOI2007]上升序列(dp)

1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4999  Solved: 1738[Submit][Status][Discuss] Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax2 < … < axm).那么就称P为S的一个上升序列.如果有多

【BZOJ 1046】 [HAOI2007]上升序列

1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2688  Solved: 891 [Submit][Status] Description 对于一个给定的S={a1,a2,a3,-,an},若有P={ax1,ax2,ax3,-,axm},满足(x1 < x2 < - < xm)且( ax1 < ax2 < - < axm).那么就称P为S的一个上升序列.如果有多个P满足条件,那