欧拉函数线性筛法

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #define lli long long int
 6 using namespace std;
 7 const int MAXN=10000001;
 8 void read(int &n)
 9 {
10     char c=‘+‘;int x=0;bool flag=0;
11     while(c<‘0‘||c>‘9‘){c=getchar();if(c==‘-‘)flag=1;}
12     while(c>=‘0‘&&c<=‘9‘)
13     x=(x<<1)+(x<<3)+c-48,c=getchar();
14     flag==1?n=-x:n=x;
15 }
16 int n,m;
17 bool check[MAXN];
18 int prime[MAXN];
19 int phi[MAXN];
20 int tot=0;
21 int  main()
22 {
23            cin>>n;
24            phi[1]=1;
25         for(int i=2;i<=n;i++)
26         {
27             if(!check[i])
28                 prime[++tot]=i,phi[i]=i-1;// 只有i与它互质
29             for(int j=1;j<=tot;j++)
30             {
31                 if(i*prime[j]>n)
32                     break;
33                 check[i*prime[j]]=1;
34                 if(i%prime[j]==0)
35                 {
36                     phi[i*prime[j]]=phi[i]*prime[j];
37                     break;
38                 }
39                 else
40                     phi[i*prime[j]]=phi[i]*(prime[j]-1);
41             }
42         }
43         printf("%d\n",phi[n]);
44     return 0;
45 }

注意 if(i%prime[j]==0)

不要写成if(!i%prime[j])

时间: 2024-08-03 15:05:26

欧拉函数线性筛法的相关文章

【bzoj2401】陶陶的难题I “高精度”+欧拉函数+线性筛

题目描述 求 输入 第一行包含一个正整数T,表示有T组测试数据.接下来T<=10^5行,每行给出一个正整数N,N<=10^6. 输出 包含T行,依次给出对应的答案. 样例输入 7 1 10 100 1000 10000 100000 1000000 样例输出 1 2127 18446224 183011304660 1827127167830060 18269345553999897648 182690854273058293758232 题解 “高精度”+欧拉函数+线性筛 由于$i$和$j$

质因数分解+欧拉筛+线性基

质因数分解: for(int i=2;i*i<=n;i++){ if(n%i==0) p.push_back(i); while(n%i==0) n/=i; } if(n!=1) p.push_back(n); 欧拉函数(线性筛): //欧拉函数 phi[x]代表[1,x]种与x互质的数的个数 void getphi() { phi[1]=1;int cnt=0; for(int i=2;i<=N;i++){ if(!vis[i]){prime[++cnt]=i;phi[i]=i-1;} fo

欧拉线性筛法求素数(顺便实现欧拉函数的求值)

我们先来看一下最经典的埃拉特斯特尼筛法.时间复杂度为O(n loglog n) int ans[MAXN]; void Prime(int n) { int cnt=0; memset(prime,1,sizeof(prime)); prime[0]=prime[1]=0; for(int i=2;i<n;i++) { if(vis[i]) { ans[cnt++]=i;//保存素数 for(int j=i*i;j<n;j+=i)//i*i开始进行了稍微的优化 prime[j]=0;//不是素

数论快速入门(同余、扩展欧几里德、中国剩余定理、大素数测定和整数分解、素数三种筛法、欧拉函数以及各种模板)

数学渣渣愉快的玩了一把数论,来总结一下几种常用的算法入门,不过鶸也是刚刚入门, 所以也只是粗略的记录下原理,贴下模板,以及入门题目(感受下模板怎么用的) (PS:文中蓝色字体都可以点进去查看百度原文) 附赠数论入门训练专题:点我打开专题(题目顺序基本正常,用以配套数论入门) 一.同余定理 简单粗暴的说就是:若 a-b == m 那么 a%m == b%m 这个模运算性质一眼看出...直接上入门水题: Reduced ID Numbers 附AC代码(这个也没啥模板....知道就好) #inclu

poj 2478 Farey Sequence(基于素数筛法求欧拉函数)

http://poj.org/problem?id=2478 求欧拉函数的模板. 初涉欧拉函数,先学一学它基本的性质. 1.欧拉函数是求小于n且和n互质(包括1)的正整数的个数.记为φ(n). 2.欧拉定理:若a与n互质,那么有a^φ(n) ≡ 1(mod n),经常用于求幂的模. 3.若p是一个质数,那么φ(p) = p-1,注意φ(1) = 1. 4.欧拉函数是积性函数: 若m与n互质,那么φ(nm) = φ(n) * φ(m). 若n = p^k且p为质数,那么φ(n) = p^k - p

线性筛素数、欧拉函数

判断一个数n是否是素数,众所周知可以用O(sqrt(n))的方法. 但是如果要求很多个数,这个方法就不太好了.(比如所有小于n的数,复杂度就是O(n1.5).) 埃拉托斯特尼筛法,大家都听说过.从2到n,去掉每个数的倍数,剩下来的就是质数. 不过这个方法会重复删除,比如6是2.3的倍数,会被删2次,因子越多,删的次数就越多. 改进之后的线性筛保证每个数只被最小的质因子删,所以是O(n)的. #include<cstdio> #include<cstring> #define MAX

初等数论-Base-1(筛法求素数,欧拉函数,欧几里得算法)

前言 初等数论在OI中应用的基础部分,同机房的AuSquare和zhou2003君早就写完了,一直划水偷懒的Hk-pls表示很方,这才开始了这篇博客. $P.S.$可能会分部分发表. 筛法求素数 埃式筛素数 问题:求$[1,n]$中的所有素数 总体思路就是在$[2,n]$中每当我们找到一个新的素数,在把它加入我们的素数队列的同时我们把它的倍数全部打上标记(包括它自己),下一个没有被标记的数就是新的素数. void find_prime(int n){ memset(used,0,sizeof(u

线性(欧拉)筛&amp;欧拉函数

线性筛法 what is 线性筛??就是基于最基本的筛法的优化. 在基础的筛法上,我们发现有的数字会被重复筛,例如6既会被2枚举到也会被3枚举到,必然有重复运算. 我们的做法就是让每一个数的最小因数筛. \(FOR\) \(EXAMPLE:\) 有一个数\(2 * 2 * 3 * 5\) 有另一个数 \(3 * 3 * 3* 5\) 那么第一个数枚举到3的话,筛到的数字是\(2 * 2 * 3 * 3 * 5\) 但是在第二个数字再次枚举的时候 枚举到2时 也会枚举到\(2 * 2 * 3 *

【模版】线性筛(素数,欧拉函数,莫比乌斯函数)

线性筛: 线性筛是一种比较实用的筛法,它与数论中的(完全)积性函数密切相关: (完全)积性函数的定义:对于两个整数 \(x_1\) 和 \(x_2\) ,若有函数\(f(x)\)满足:\(f(x_1x_2)=f(x_1)f(x_2)\),我们称\(f(x)\)为完全积性函数:特殊的:若 \(x_1\) 和 \(x_2\) 一定为两个互质的正整数,我们称\(f(x)\)为积性函数! 而线性筛就是利用了这一性质,将\(f(x)\)用且只用\(x\)最小的那个质因子利用\(f(x_1x_2)=f(x_