Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
原题链接:https://oj.leetcode.com/problems/triangle/
题目:给定一个三角形。找出从顶部究竟部的最短路径和。每一步你能够移动到下一行的邻接数字。
思路:最初的理解是:最短路径和能够看成是找出每一行中的最小值。最后求和。
public int minimumTotal1(List<List<Integer>> triangle) { int sum = 0; for (int i = 0; i < triangle.size(); i++) { int min = triangle.get(i).get(0); for (int j = 0; j < triangle.get(i).size(); j++) { if (triangle.get(i).get(j) < min) min = triangle.get(i).get(j); } sum += min; } return sum; }
提交后发现错了。要是这样也太简单了。
要求的并非每行的最小值,而应该这样理解:到达每一个元素的最小路径和为到上一层与它相邻两个元素最短路径和中较小者加上该元素的值。
所以,解法能够例如以下:
public int minimumTotal(List<List<Integer>> triangle) { for(int i = triangle.size() - 2; i >= 0; i--) { for(int j = 0; j < triangle.get(i).size(); j++) { triangle.get(i).set(j, triangle.get(i).get(j) + Math.min(triangle.get(i + 1).get(j), triangle.get(i + 1).get(j + 1))); } } return triangle.get(0).get(0); }
reference : http://www.douban.com/note/272435660/
时间: 2024-10-18 14:48:56