AES advanced encryption standard 3

This optimized <../aesbench/> AES implementation conforms to FIPS-197.

aes.h

#ifndef _AES_H
#define _AES_H

#ifndef uint8
#define uint8  unsigned char
#endif

#ifndef uint32
#define uint32 unsigned long int
#endif

typedef struct
{
    uint32 erk[64];     /* encryption round keys */
    uint32 drk[64];     /* decryption round keys */
    int nr;             /* number of rounds */
}
aes_context;

int  aes_set_key( aes_context *ctx, uint8 *key, int nbits );
void aes_encrypt( aes_context *ctx, uint8 input[16], uint8 output[16] );
void aes_decrypt( aes_context *ctx, uint8 input[16], uint8 output[16] );

#endif /* aes.h */

aes.c

/*
 *  FIPS-197 compliant AES implementation
 *
 *  Copyright (C) 2001-2004  Christophe Devine
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include "aes.h"

/* uncomment the following line to run the test suite */

/* #define TEST */

/* uncomment the following line to use pre-computed tables */
/* otherwise the tables will be generated at the first run */

/* #define FIXED_TABLES */

#ifndef FIXED_TABLES

/* forward S-box & tables */

uint32 FSb[256];
uint32 FT0[256];
uint32 FT1[256];
uint32 FT2[256];
uint32 FT3[256]; 

/* reverse S-box & tables */

uint32 RSb[256];
uint32 RT0[256];
uint32 RT1[256];
uint32 RT2[256];
uint32 RT3[256];

/* round constants */

uint32 RCON[10];

/* tables generation flag */

int do_init = 1;

/* tables generation routine */

#define ROTR8(x) ( ( ( x << 24 ) & 0xFFFFFFFF ) | \
                   ( ( x & 0xFFFFFFFF ) >>  8 ) )

#define XTIME(x) ( ( x <<  1 ) ^ ( ( x & 0x80 ) ? 0x1B : 0x00 ) )
#define MUL(x,y) ( ( x &&  y ) ? pow[(log[x] + log[y]) % 255] : 0 )

void aes_gen_tables( void )
{
    int i;
    uint8 x, y;
    uint8 pow[256];
    uint8 log[256];

    /* compute pow and log tables over GF(2^8) */

    for( i = 0, x = 1; i < 256; i++, x ^= XTIME( x ) )
    {
        pow[i] = x;
        log[x] = i;
    }

    /* calculate the round constants */

    for( i = 0, x = 1; i < 10; i++, x = XTIME( x ) )
    {
        RCON[i] = (uint32) x << 24;
    }

    /* generate the forward and reverse S-boxes */

    FSb[0x00] = 0x63;
    RSb[0x63] = 0x00;

    for( i = 1; i < 256; i++ )
    {
        x = pow[255 - log[i]];

        y = x;  y = ( y << 1 ) | ( y >> 7 );
        x ^= y; y = ( y << 1 ) | ( y >> 7 );
        x ^= y; y = ( y << 1 ) | ( y >> 7 );
        x ^= y; y = ( y << 1 ) | ( y >> 7 );
        x ^= y ^ 0x63;

        FSb[i] = x;
        RSb[x] = i;
    }

    /* generate the forward and reverse tables */

    for( i = 0; i < 256; i++ )
    {
        x = (unsigned char) FSb[i]; y = XTIME( x );

        FT0[i] =   (uint32) ( x ^ y ) ^
                 ( (uint32) x <<  8 ) ^
                 ( (uint32) x << 16 ) ^
                 ( (uint32) y << 24 );

        FT0[i] &= 0xFFFFFFFF;

        FT1[i] = ROTR8( FT0[i] );
        FT2[i] = ROTR8( FT1[i] );
        FT3[i] = ROTR8( FT2[i] );

        y = (unsigned char) RSb[i];

        RT0[i] = ( (uint32) MUL( 0x0B, y )       ) ^
                 ( (uint32) MUL( 0x0D, y ) <<  8 ) ^
                 ( (uint32) MUL( 0x09, y ) << 16 ) ^
                 ( (uint32) MUL( 0x0E, y ) << 24 );

        RT0[i] &= 0xFFFFFFFF;

        RT1[i] = ROTR8( RT0[i] );
        RT2[i] = ROTR8( RT1[i] );
        RT3[i] = ROTR8( RT2[i] );
    }
}

#else

/* forward S-box */

static const uint32 FSb[256] =
{
    0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,
    0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
    0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
    0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
    0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,
    0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
    0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,
    0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
    0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
    0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
    0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
    0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
    0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,
    0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
    0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
    0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
    0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,
    0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
    0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,
    0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
    0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
    0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
    0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9,
    0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
    0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,
    0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
    0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
    0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
    0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94,
    0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
    0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,
    0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};

/* forward tables */

#define FT \
    V(C6,63,63,A5), V(F8,7C,7C,84), V(EE,77,77,99), V(F6,7B,7B,8D),     V(FF,F2,F2,0D), V(D6,6B,6B,BD), V(DE,6F,6F,B1), V(91,C5,C5,54),     V(60,30,30,50), V(02,01,01,03), V(CE,67,67,A9), V(56,2B,2B,7D),     V(E7,FE,FE,19), V(B5,D7,D7,62), V(4D,AB,AB,E6), V(EC,76,76,9A),     V(8F,CA,CA,45), V(1F,82,82,9D), V(89,C9,C9,40), V(FA,7D,7D,87),     V(EF,FA,FA,15), V(B2,59,59,EB), V(8E,47,47,C9), V(FB,F0,F0,0B),     V(41,AD,AD,EC), V(B3,D4,D4,67), V(5F,A2,A2,FD), V(45,AF,AF,EA),     V(23,9C,9C,BF), V(53,A4,A4,F7), V(E4,72,72,96), V(9B,C0,C0,5B),     V(75,B7,B7,C2), V(E1,FD,FD,1C), V(3D,93,93,AE), V(4C,26,26,6A),     V(6C,36,36,5A), V(7E,3F,3F,41), V(F5,F7,F7,02), V(83,CC,CC,4F),     V(68,34,34,5C), V(51,A5,A5,F4), V(D1,E5,E5,34), V(F9,F1,F1,08),     V(E2,71,71,93), V(AB,D8,D8,73), V(62,31,31,53), V(2A,15,15,3F),     V(08,04,04,0C), V(95,C7,C7,52), V(46,23,23,65), V(9D,C3,C3,5E),     V(30,18,18,28), V(37,96,96,A1), V(0A,05,05,0F), V(2F,9A,9A,B5),     V(0E,07,07,09), V(24,12,12,36), V(1B,80,80,9B), V(DF,E2,E2,3D),     V(CD,EB,EB,26), V(4E,27,27,69), V(7F,B2,B2,CD), V(EA,75,75,9F),     V(12,09,09,1B), V(1D,83,83,9E), V(58,2C,2C,74), V(34,1A,1A,2E),     V(36,1B,1B,2D), V(DC,6E,6E,B2), V(B4,5A,5A,EE), V(5B,A0,A0,FB),     V(A4,52,52,F6), V(76,3B,3B,4D), V(B7,D6,D6,61), V(7D,B3,B3,CE),     V(52,29,29,7B), V(DD,E3,E3,3E), V(5E,2F,2F,71), V(13,84,84,97),     V(A6,53,53,F5), V(B9,D1,D1,68), V(00,00,00,00), V(C1,ED,ED,2C),     V(40,20,20,60), V(E3,FC,FC,1F), V(79,B1,B1,C8), V(B6,5B,5B,ED),     V(D4,6A,6A,BE), V(8D,CB,CB,46), V(67,BE,BE,D9), V(72,39,39,4B),     V(94,4A,4A,DE), V(98,4C,4C,D4), V(B0,58,58,E8), V(85,CF,CF,4A),     V(BB,D0,D0,6B), V(C5,EF,EF,2A), V(4F,AA,AA,E5), V(ED,FB,FB,16),     V(86,43,43,C5), V(9A,4D,4D,D7), V(66,33,33,55), V(11,85,85,94),     V(8A,45,45,CF), V(E9,F9,F9,10), V(04,02,02,06), V(FE,7F,7F,81),     V(A0,50,50,F0), V(78,3C,3C,44), V(25,9F,9F,BA), V(4B,A8,A8,E3),     V(A2,51,51,F3), V(5D,A3,A3,FE), V(80,40,40,C0), V(05,8F,8F,8A),     V(3F,92,92,AD), V(21,9D,9D,BC), V(70,38,38,48), V(F1,F5,F5,04),     V(63,BC,BC,DF), V(77,B6,B6,C1), V(AF,DA,DA,75), V(42,21,21,63),     V(20,10,10,30), V(E5,FF,FF,1A), V(FD,F3,F3,0E), V(BF,D2,D2,6D),     V(81,CD,CD,4C), V(18,0C,0C,14), V(26,13,13,35), V(C3,EC,EC,2F),     V(BE,5F,5F,E1), V(35,97,97,A2), V(88,44,44,CC), V(2E,17,17,39),     V(93,C4,C4,57), V(55,A7,A7,F2), V(FC,7E,7E,82), V(7A,3D,3D,47),     V(C8,64,64,AC), V(BA,5D,5D,E7), V(32,19,19,2B), V(E6,73,73,95),     V(C0,60,60,A0), V(19,81,81,98), V(9E,4F,4F,D1), V(A3,DC,DC,7F),     V(44,22,22,66), V(54,2A,2A,7E), V(3B,90,90,AB), V(0B,88,88,83),     V(8C,46,46,CA), V(C7,EE,EE,29), V(6B,B8,B8,D3), V(28,14,14,3C),     V(A7,DE,DE,79), V(BC,5E,5E,E2), V(16,0B,0B,1D), V(AD,DB,DB,76),     V(DB,E0,E0,3B), V(64,32,32,56), V(74,3A,3A,4E), V(14,0A,0A,1E),     V(92,49,49,DB), V(0C,06,06,0A), V(48,24,24,6C), V(B8,5C,5C,E4),     V(9F,C2,C2,5D), V(BD,D3,D3,6E), V(43,AC,AC,EF), V(C4,62,62,A6),     V(39,91,91,A8), V(31,95,95,A4), V(D3,E4,E4,37), V(F2,79,79,8B),     V(D5,E7,E7,32), V(8B,C8,C8,43), V(6E,37,37,59), V(DA,6D,6D,B7),     V(01,8D,8D,8C), V(B1,D5,D5,64), V(9C,4E,4E,D2), V(49,A9,A9,E0),     V(D8,6C,6C,B4), V(AC,56,56,FA), V(F3,F4,F4,07), V(CF,EA,EA,25),     V(CA,65,65,AF), V(F4,7A,7A,8E), V(47,AE,AE,E9), V(10,08,08,18),     V(6F,BA,BA,D5), V(F0,78,78,88), V(4A,25,25,6F), V(5C,2E,2E,72),     V(38,1C,1C,24), V(57,A6,A6,F1), V(73,B4,B4,C7), V(97,C6,C6,51),     V(CB,E8,E8,23), V(A1,DD,DD,7C), V(E8,74,74,9C), V(3E,1F,1F,21),     V(96,4B,4B,DD), V(61,BD,BD,DC), V(0D,8B,8B,86), V(0F,8A,8A,85),     V(E0,70,70,90), V(7C,3E,3E,42), V(71,B5,B5,C4), V(CC,66,66,AA),     V(90,48,48,D8), V(06,03,03,05), V(F7,F6,F6,01), V(1C,0E,0E,12),     V(C2,61,61,A3), V(6A,35,35,5F), V(AE,57,57,F9), V(69,B9,B9,D0),     V(17,86,86,91), V(99,C1,C1,58), V(3A,1D,1D,27), V(27,9E,9E,B9),     V(D9,E1,E1,38), V(EB,F8,F8,13), V(2B,98,98,B3), V(22,11,11,33),     V(D2,69,69,BB), V(A9,D9,D9,70), V(07,8E,8E,89), V(33,94,94,A7),     V(2D,9B,9B,B6), V(3C,1E,1E,22), V(15,87,87,92), V(C9,E9,E9,20),     V(87,CE,CE,49), V(AA,55,55,FF), V(50,28,28,78), V(A5,DF,DF,7A),     V(03,8C,8C,8F), V(59,A1,A1,F8), V(09,89,89,80), V(1A,0D,0D,17),     V(65,BF,BF,DA), V(D7,E6,E6,31), V(84,42,42,C6), V(D0,68,68,B8),     V(82,41,41,C3), V(29,99,99,B0), V(5A,2D,2D,77), V(1E,0F,0F,11),     V(7B,B0,B0,CB), V(A8,54,54,FC), V(6D,BB,BB,D6), V(2C,16,16,3A)

#define V(a,b,c,d) 0x##a##b##c##d
static const uint32 FT0[256] = { FT };
#undef V

#define V(a,b,c,d) 0x##d##a##b##c
static const uint32 FT1[256] = { FT };
#undef V

#define V(a,b,c,d) 0x##c##d##a##b
static const uint32 FT2[256] = { FT };
#undef V

#define V(a,b,c,d) 0x##b##c##d##a
static const uint32 FT3[256] = { FT };
#undef V

#undef FT

/* reverse S-box */

static const uint32 RSb[256] =
{
    0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38,
    0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
    0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
    0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
    0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D,
    0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
    0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2,
    0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
    0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
    0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
    0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA,
    0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
    0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A,
    0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
    0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
    0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
    0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA,
    0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
    0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85,
    0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
    0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
    0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
    0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20,
    0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
    0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31,
    0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
    0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
    0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
    0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0,
    0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
    0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26,
    0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};

/* reverse tables */

#define RT \
    V(51,F4,A7,50), V(7E,41,65,53), V(1A,17,A4,C3), V(3A,27,5E,96),     V(3B,AB,6B,CB), V(1F,9D,45,F1), V(AC,FA,58,AB), V(4B,E3,03,93),     V(20,30,FA,55), V(AD,76,6D,F6), V(88,CC,76,91), V(F5,02,4C,25),     V(4F,E5,D7,FC), V(C5,2A,CB,D7), V(26,35,44,80), V(B5,62,A3,8F),     V(DE,B1,5A,49), V(25,BA,1B,67), V(45,EA,0E,98), V(5D,FE,C0,E1),     V(C3,2F,75,02), V(81,4C,F0,12), V(8D,46,97,A3), V(6B,D3,F9,C6),     V(03,8F,5F,E7), V(15,92,9C,95), V(BF,6D,7A,EB), V(95,52,59,DA),     V(D4,BE,83,2D), V(58,74,21,D3), V(49,E0,69,29), V(8E,C9,C8,44),     V(75,C2,89,6A), V(F4,8E,79,78), V(99,58,3E,6B), V(27,B9,71,DD),     V(BE,E1,4F,B6), V(F0,88,AD,17), V(C9,20,AC,66), V(7D,CE,3A,B4),     V(63,DF,4A,18), V(E5,1A,31,82), V(97,51,33,60), V(62,53,7F,45),     V(B1,64,77,E0), V(BB,6B,AE,84), V(FE,81,A0,1C), V(F9,08,2B,94),     V(70,48,68,58), V(8F,45,FD,19), V(94,DE,6C,87), V(52,7B,F8,B7),     V(AB,73,D3,23), V(72,4B,02,E2), V(E3,1F,8F,57), V(66,55,AB,2A),     V(B2,EB,28,07), V(2F,B5,C2,03), V(86,C5,7B,9A), V(D3,37,08,A5),     V(30,28,87,F2), V(23,BF,A5,B2), V(02,03,6A,BA), V(ED,16,82,5C),     V(8A,CF,1C,2B), V(A7,79,B4,92), V(F3,07,F2,F0), V(4E,69,E2,A1),     V(65,DA,F4,CD), V(06,05,BE,D5), V(D1,34,62,1F), V(C4,A6,FE,8A),     V(34,2E,53,9D), V(A2,F3,55,A0), V(05,8A,E1,32), V(A4,F6,EB,75),     V(0B,83,EC,39), V(40,60,EF,AA), V(5E,71,9F,06), V(BD,6E,10,51),     V(3E,21,8A,F9), V(96,DD,06,3D), V(DD,3E,05,AE), V(4D,E6,BD,46),     V(91,54,8D,B5), V(71,C4,5D,05), V(04,06,D4,6F), V(60,50,15,FF),     V(19,98,FB,24), V(D6,BD,E9,97), V(89,40,43,CC), V(67,D9,9E,77),     V(B0,E8,42,BD), V(07,89,8B,88), V(E7,19,5B,38), V(79,C8,EE,DB),     V(A1,7C,0A,47), V(7C,42,0F,E9), V(F8,84,1E,C9), V(00,00,00,00),     V(09,80,86,83), V(32,2B,ED,48), V(1E,11,70,AC), V(6C,5A,72,4E),     V(FD,0E,FF,FB), V(0F,85,38,56), V(3D,AE,D5,1E), V(36,2D,39,27),     V(0A,0F,D9,64), V(68,5C,A6,21), V(9B,5B,54,D1), V(24,36,2E,3A),     V(0C,0A,67,B1), V(93,57,E7,0F), V(B4,EE,96,D2), V(1B,9B,91,9E),     V(80,C0,C5,4F), V(61,DC,20,A2), V(5A,77,4B,69), V(1C,12,1A,16),     V(E2,93,BA,0A), V(C0,A0,2A,E5), V(3C,22,E0,43), V(12,1B,17,1D),     V(0E,09,0D,0B), V(F2,8B,C7,AD), V(2D,B6,A8,B9), V(14,1E,A9,C8),     V(57,F1,19,85), V(AF,75,07,4C), V(EE,99,DD,BB), V(A3,7F,60,FD),     V(F7,01,26,9F), V(5C,72,F5,BC), V(44,66,3B,C5), V(5B,FB,7E,34),     V(8B,43,29,76), V(CB,23,C6,DC), V(B6,ED,FC,68), V(B8,E4,F1,63),     V(D7,31,DC,CA), V(42,63,85,10), V(13,97,22,40), V(84,C6,11,20),     V(85,4A,24,7D), V(D2,BB,3D,F8), V(AE,F9,32,11), V(C7,29,A1,6D),     V(1D,9E,2F,4B), V(DC,B2,30,F3), V(0D,86,52,EC), V(77,C1,E3,D0),     V(2B,B3,16,6C), V(A9,70,B9,99), V(11,94,48,FA), V(47,E9,64,22),     V(A8,FC,8C,C4), V(A0,F0,3F,1A), V(56,7D,2C,D8), V(22,33,90,EF),     V(87,49,4E,C7), V(D9,38,D1,C1), V(8C,CA,A2,FE), V(98,D4,0B,36),     V(A6,F5,81,CF), V(A5,7A,DE,28), V(DA,B7,8E,26), V(3F,AD,BF,A4),     V(2C,3A,9D,E4), V(50,78,92,0D), V(6A,5F,CC,9B), V(54,7E,46,62),     V(F6,8D,13,C2), V(90,D8,B8,E8), V(2E,39,F7,5E), V(82,C3,AF,F5),     V(9F,5D,80,BE), V(69,D0,93,7C), V(6F,D5,2D,A9), V(CF,25,12,B3),     V(C8,AC,99,3B), V(10,18,7D,A7), V(E8,9C,63,6E), V(DB,3B,BB,7B),     V(CD,26,78,09), V(6E,59,18,F4), V(EC,9A,B7,01), V(83,4F,9A,A8),     V(E6,95,6E,65), V(AA,FF,E6,7E), V(21,BC,CF,08), V(EF,15,E8,E6),     V(BA,E7,9B,D9), V(4A,6F,36,CE), V(EA,9F,09,D4), V(29,B0,7C,D6),     V(31,A4,B2,AF), V(2A,3F,23,31), V(C6,A5,94,30), V(35,A2,66,C0),     V(74,4E,BC,37), V(FC,82,CA,A6), V(E0,90,D0,B0), V(33,A7,D8,15),     V(F1,04,98,4A), V(41,EC,DA,F7), V(7F,CD,50,0E), V(17,91,F6,2F),     V(76,4D,D6,8D), V(43,EF,B0,4D), V(CC,AA,4D,54), V(E4,96,04,DF),     V(9E,D1,B5,E3), V(4C,6A,88,1B), V(C1,2C,1F,B8), V(46,65,51,7F),     V(9D,5E,EA,04), V(01,8C,35,5D), V(FA,87,74,73), V(FB,0B,41,2E),     V(B3,67,1D,5A), V(92,DB,D2,52), V(E9,10,56,33), V(6D,D6,47,13),     V(9A,D7,61,8C), V(37,A1,0C,7A), V(59,F8,14,8E), V(EB,13,3C,89),     V(CE,A9,27,EE), V(B7,61,C9,35), V(E1,1C,E5,ED), V(7A,47,B1,3C),     V(9C,D2,DF,59), V(55,F2,73,3F), V(18,14,CE,79), V(73,C7,37,BF),     V(53,F7,CD,EA), V(5F,FD,AA,5B), V(DF,3D,6F,14), V(78,44,DB,86),     V(CA,AF,F3,81), V(B9,68,C4,3E), V(38,24,34,2C), V(C2,A3,40,5F),     V(16,1D,C3,72), V(BC,E2,25,0C), V(28,3C,49,8B), V(FF,0D,95,41),     V(39,A8,01,71), V(08,0C,B3,DE), V(D8,B4,E4,9C), V(64,56,C1,90),     V(7B,CB,84,61), V(D5,32,B6,70), V(48,6C,5C,74), V(D0,B8,57,42)

#define V(a,b,c,d) 0x##a##b##c##d
static const uint32 RT0[256] = { RT };
#undef V

#define V(a,b,c,d) 0x##d##a##b##c
static const uint32 RT1[256] = { RT };
#undef V

#define V(a,b,c,d) 0x##c##d##a##b
static const uint32 RT2[256] = { RT };
#undef V

#define V(a,b,c,d) 0x##b##c##d##a
static const uint32 RT3[256] = { RT };
#undef V

#undef RT

/* round constants */

static const uint32 RCON[10] =
{
    0x01000000, 0x02000000, 0x04000000, 0x08000000,
    0x10000000, 0x20000000, 0x40000000, 0x80000000,
    0x1B000000, 0x36000000
};

int do_init = 0;

void aes_gen_tables( void )
{
}

#endif

/* platform-independant 32-bit integer manipulation macros */

#define GET_UINT32(n,b,i)                       \
{                                                   (n) = ( (uint32) (b)[(i)    ] << 24 )               | ( (uint32) (b)[(i) + 1] << 16 )               | ( (uint32) (b)[(i) + 2] <<  8 )               | ( (uint32) (b)[(i) + 3]       );      }

#define PUT_UINT32(n,b,i)                       \
{                                                   (b)[(i)    ] = (uint8) ( (n) >> 24 );           (b)[(i) + 1] = (uint8) ( (n) >> 16 );           (b)[(i) + 2] = (uint8) ( (n) >>  8 );           (b)[(i) + 3] = (uint8) ( (n)       );       }

/* decryption key schedule tables */

int KT_init = 1;

uint32 KT0[256];
uint32 KT1[256];
uint32 KT2[256];
uint32 KT3[256];

/* AES key scheduling routine */

int aes_set_key( aes_context *ctx, uint8 *key, int nbits )
{
    int i;
    uint32 *RK, *SK;

    if( do_init )
    {
        aes_gen_tables();

        do_init = 0;
    }

    switch( nbits )
    {
        case 128: ctx->nr = 10; break;
        case 192: ctx->nr = 12; break;
        case 256: ctx->nr = 14; break;
        default : return( 1 );
    }

    RK = ctx->erk;

    for( i = 0; i < (nbits >> 5); i++ )
    {
        GET_UINT32( RK[i], key, i * 4 );
    }

    /* setup encryption round keys */

    switch( nbits )
    {
    case 128:

        for( i = 0; i < 10; i++, RK += 4 )
        {
            RK[4]  = RK[0] ^ RCON[i] ^
                        ( FSb[ (uint8) ( RK[3] >> 16 ) ] << 24 ) ^
                        ( FSb[ (uint8) ( RK[3] >>  8 ) ] << 16 ) ^
                        ( FSb[ (uint8) ( RK[3]       ) ] <<  8 ) ^
                        ( FSb[ (uint8) ( RK[3] >> 24 ) ]       );

            RK[5]  = RK[1] ^ RK[4];
            RK[6]  = RK[2] ^ RK[5];
            RK[7]  = RK[3] ^ RK[6];
        }
        break;

    case 192:

        for( i = 0; i < 8; i++, RK += 6 )
        {
            RK[6]  = RK[0] ^ RCON[i] ^
                        ( FSb[ (uint8) ( RK[5] >> 16 ) ] << 24 ) ^
                        ( FSb[ (uint8) ( RK[5] >>  8 ) ] << 16 ) ^
                        ( FSb[ (uint8) ( RK[5]       ) ] <<  8 ) ^
                        ( FSb[ (uint8) ( RK[5] >> 24 ) ]       );

            RK[7]  = RK[1] ^ RK[6];
            RK[8]  = RK[2] ^ RK[7];
            RK[9]  = RK[3] ^ RK[8];
            RK[10] = RK[4] ^ RK[9];
            RK[11] = RK[5] ^ RK[10];
        }
        break;

    case 256:

        for( i = 0; i < 7; i++, RK += 8 )
        {
            RK[8]  = RK[0] ^ RCON[i] ^
                        ( FSb[ (uint8) ( RK[7] >> 16 ) ] << 24 ) ^
                        ( FSb[ (uint8) ( RK[7] >>  8 ) ] << 16 ) ^
                        ( FSb[ (uint8) ( RK[7]       ) ] <<  8 ) ^
                        ( FSb[ (uint8) ( RK[7] >> 24 ) ]       );

            RK[9]  = RK[1] ^ RK[8];
            RK[10] = RK[2] ^ RK[9];
            RK[11] = RK[3] ^ RK[10];

            RK[12] = RK[4] ^
                        ( FSb[ (uint8) ( RK[11] >> 24 ) ] << 24 ) ^
                        ( FSb[ (uint8) ( RK[11] >> 16 ) ] << 16 ) ^
                        ( FSb[ (uint8) ( RK[11] >>  8 ) ] <<  8 ) ^
                        ( FSb[ (uint8) ( RK[11]       ) ]       );

            RK[13] = RK[5] ^ RK[12];
            RK[14] = RK[6] ^ RK[13];
            RK[15] = RK[7] ^ RK[14];
        }
        break;
    }

    /* setup decryption round keys */

    if( KT_init )
    {
        for( i = 0; i < 256; i++ )
        {
            KT0[i] = RT0[ FSb[i] ];
            KT1[i] = RT1[ FSb[i] ];
            KT2[i] = RT2[ FSb[i] ];
            KT3[i] = RT3[ FSb[i] ];
        }

        KT_init = 0;
    }

    SK = ctx->drk;

    *SK++ = *RK++;
    *SK++ = *RK++;
    *SK++ = *RK++;
    *SK++ = *RK++;

    for( i = 1; i < ctx->nr; i++ )
    {
        RK -= 8;

        *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^
                KT1[ (uint8) ( *RK >> 16 ) ] ^
                KT2[ (uint8) ( *RK >>  8 ) ] ^
                KT3[ (uint8) ( *RK       ) ]; RK++;

        *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^
                KT1[ (uint8) ( *RK >> 16 ) ] ^
                KT2[ (uint8) ( *RK >>  8 ) ] ^
                KT3[ (uint8) ( *RK       ) ]; RK++;

        *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^
                KT1[ (uint8) ( *RK >> 16 ) ] ^
                KT2[ (uint8) ( *RK >>  8 ) ] ^
                KT3[ (uint8) ( *RK       ) ]; RK++;

        *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^
                KT1[ (uint8) ( *RK >> 16 ) ] ^
                KT2[ (uint8) ( *RK >>  8 ) ] ^
                KT3[ (uint8) ( *RK       ) ]; RK++;
    }

    RK -= 8;

    *SK++ = *RK++;
    *SK++ = *RK++;
    *SK++ = *RK++;
    *SK++ = *RK++;

    return( 0 );
}

/* AES 128-bit block encryption routine */

void aes_encrypt( aes_context *ctx, uint8 input[16], uint8 output[16] )
{
    uint32 *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;

    RK = ctx->erk;

    GET_UINT32( X0, input,  0 ); X0 ^= RK[0];
    GET_UINT32( X1, input,  4 ); X1 ^= RK[1];
    GET_UINT32( X2, input,  8 ); X2 ^= RK[2];
    GET_UINT32( X3, input, 12 ); X3 ^= RK[3];

#define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3)     \
{                                                   RK += 4;                                                                                        X0 = RK[0] ^ FT0[ (uint8) ( Y0 >> 24 ) ] ^                   FT1[ (uint8) ( Y1 >> 16 ) ] ^                   FT2[ (uint8) ( Y2 >>  8 ) ] ^                   FT3[ (uint8) ( Y3       ) ];                                                       X1 = RK[1] ^ FT0[ (uint8) ( Y1 >> 24 ) ] ^                   FT1[ (uint8) ( Y2 >> 16 ) ] ^                   FT2[ (uint8) ( Y3 >>  8 ) ] ^                   FT3[ (uint8) ( Y0       ) ];                                                       X2 = RK[2] ^ FT0[ (uint8) ( Y2 >> 24 ) ] ^                   FT1[ (uint8) ( Y3 >> 16 ) ] ^                   FT2[ (uint8) ( Y0 >>  8 ) ] ^                   FT3[ (uint8) ( Y1       ) ];                                                       X3 = RK[3] ^ FT0[ (uint8) ( Y3 >> 24 ) ] ^                   FT1[ (uint8) ( Y0 >> 16 ) ] ^                   FT2[ (uint8) ( Y1 >>  8 ) ] ^                   FT3[ (uint8) ( Y2       ) ];   }

    AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 1 */
    AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 2 */
    AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 3 */
    AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 4 */
    AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 5 */
    AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 6 */
    AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 7 */
    AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 8 */
    AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 9 */

    if( ctx->nr > 10 )
    {
        AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );   /* round 10 */
        AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );   /* round 11 */
    }

    if( ctx->nr > 12 )
    {
        AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );   /* round 12 */
        AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );   /* round 13 */
    }

    /* last round */

    RK += 4;

    X0 = RK[0] ^ ( FSb[ (uint8) ( Y0 >> 24 ) ] << 24 ) ^
                 ( FSb[ (uint8) ( Y1 >> 16 ) ] << 16 ) ^
                 ( FSb[ (uint8) ( Y2 >>  8 ) ] <<  8 ) ^
                 ( FSb[ (uint8) ( Y3       ) ]       );

    X1 = RK[1] ^ ( FSb[ (uint8) ( Y1 >> 24 ) ] << 24 ) ^
                 ( FSb[ (uint8) ( Y2 >> 16 ) ] << 16 ) ^
                 ( FSb[ (uint8) ( Y3 >>  8 ) ] <<  8 ) ^
                 ( FSb[ (uint8) ( Y0       ) ]       );

    X2 = RK[2] ^ ( FSb[ (uint8) ( Y2 >> 24 ) ] << 24 ) ^
                 ( FSb[ (uint8) ( Y3 >> 16 ) ] << 16 ) ^
                 ( FSb[ (uint8) ( Y0 >>  8 ) ] <<  8 ) ^
                 ( FSb[ (uint8) ( Y1       ) ]       );

    X3 = RK[3] ^ ( FSb[ (uint8) ( Y3 >> 24 ) ] << 24 ) ^
                 ( FSb[ (uint8) ( Y0 >> 16 ) ] << 16 ) ^
                 ( FSb[ (uint8) ( Y1 >>  8 ) ] <<  8 ) ^
                 ( FSb[ (uint8) ( Y2       ) ]       );

    PUT_UINT32( X0, output,  0 );
    PUT_UINT32( X1, output,  4 );
    PUT_UINT32( X2, output,  8 );
    PUT_UINT32( X3, output, 12 );
}

/* AES 128-bit block decryption routine */

void aes_decrypt( aes_context *ctx, uint8 input[16], uint8 output[16] )
{
    uint32 *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;

    RK = ctx->drk;

    GET_UINT32( X0, input,  0 ); X0 ^= RK[0];
    GET_UINT32( X1, input,  4 ); X1 ^= RK[1];
    GET_UINT32( X2, input,  8 ); X2 ^= RK[2];
    GET_UINT32( X3, input, 12 ); X3 ^= RK[3];

#define AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3)     \
{                                                   RK += 4;                                                                                        X0 = RK[0] ^ RT0[ (uint8) ( Y0 >> 24 ) ] ^                   RT1[ (uint8) ( Y3 >> 16 ) ] ^                   RT2[ (uint8) ( Y2 >>  8 ) ] ^                   RT3[ (uint8) ( Y1       ) ];                                                       X1 = RK[1] ^ RT0[ (uint8) ( Y1 >> 24 ) ] ^                   RT1[ (uint8) ( Y0 >> 16 ) ] ^                   RT2[ (uint8) ( Y3 >>  8 ) ] ^                   RT3[ (uint8) ( Y2       ) ];                                                       X2 = RK[2] ^ RT0[ (uint8) ( Y2 >> 24 ) ] ^                   RT1[ (uint8) ( Y1 >> 16 ) ] ^                   RT2[ (uint8) ( Y0 >>  8 ) ] ^                   RT3[ (uint8) ( Y3       ) ];                                                       X3 = RK[3] ^ RT0[ (uint8) ( Y3 >> 24 ) ] ^                   RT1[ (uint8) ( Y2 >> 16 ) ] ^                   RT2[ (uint8) ( Y1 >>  8 ) ] ^                   RT3[ (uint8) ( Y0       ) ];   }

    AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 1 */
    AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 2 */
    AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 3 */
    AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 4 */
    AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 5 */
    AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 6 */
    AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 7 */
    AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 8 */
    AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 9 */

    if( ctx->nr > 10 )
    {
        AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );   /* round 10 */
        AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );   /* round 11 */
    }

    if( ctx->nr > 12 )
    {
        AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );   /* round 12 */
        AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );   /* round 13 */
    }

    /* last round */

    RK += 4;

    X0 = RK[0] ^ ( RSb[ (uint8) ( Y0 >> 24 ) ] << 24 ) ^
                 ( RSb[ (uint8) ( Y3 >> 16 ) ] << 16 ) ^
                 ( RSb[ (uint8) ( Y2 >>  8 ) ] <<  8 ) ^
                 ( RSb[ (uint8) ( Y1       ) ]       );

    X1 = RK[1] ^ ( RSb[ (uint8) ( Y1 >> 24 ) ] << 24 ) ^
                 ( RSb[ (uint8) ( Y0 >> 16 ) ] << 16 ) ^
                 ( RSb[ (uint8) ( Y3 >>  8 ) ] <<  8 ) ^
                 ( RSb[ (uint8) ( Y2       ) ]       );

    X2 = RK[2] ^ ( RSb[ (uint8) ( Y2 >> 24 ) ] << 24 ) ^
                 ( RSb[ (uint8) ( Y1 >> 16 ) ] << 16 ) ^
                 ( RSb[ (uint8) ( Y0 >>  8 ) ] <<  8 ) ^
                 ( RSb[ (uint8) ( Y3       ) ]       );

    X3 = RK[3] ^ ( RSb[ (uint8) ( Y3 >> 24 ) ] << 24 ) ^
                 ( RSb[ (uint8) ( Y2 >> 16 ) ] << 16 ) ^
                 ( RSb[ (uint8) ( Y1 >>  8 ) ] <<  8 ) ^
                 ( RSb[ (uint8) ( Y0       ) ]       );

    PUT_UINT32( X0, output,  0 );
    PUT_UINT32( X1, output,  4 );
    PUT_UINT32( X2, output,  8 );
    PUT_UINT32( X3, output, 12 );
}

#ifdef TEST

#include <string.h>
#include <stdio.h>

/*
 * Rijndael Monte Carlo Test: ECB mode
 * source: NIST - rijndael-vals.zip
 */

static unsigned char AES_enc_test[3][16] =
{
    { 0xA0, 0x43, 0x77, 0xAB, 0xE2, 0x59, 0xB0, 0xD0,
      0xB5, 0xBA, 0x2D, 0x40, 0xA5, 0x01, 0x97, 0x1B },
    { 0x4E, 0x46, 0xF8, 0xC5, 0x09, 0x2B, 0x29, 0xE2,
      0x9A, 0x97, 0x1A, 0x0C, 0xD1, 0xF6, 0x10, 0xFB },
    { 0x1F, 0x67, 0x63, 0xDF, 0x80, 0x7A, 0x7E, 0x70,
      0x96, 0x0D, 0x4C, 0xD3, 0x11, 0x8E, 0x60, 0x1A }
};

static unsigned char AES_dec_test[3][16] =
{
    { 0xF5, 0xBF, 0x8B, 0x37, 0x13, 0x6F, 0x2E, 0x1F,
      0x6B, 0xEC, 0x6F, 0x57, 0x20, 0x21, 0xE3, 0xBA },
    { 0xF1, 0xA8, 0x1B, 0x68, 0xF6, 0xE5, 0xA6, 0x27,
      0x1A, 0x8C, 0xB2, 0x4E, 0x7D, 0x94, 0x91, 0xEF },
    { 0x4D, 0xE0, 0xC6, 0xDF, 0x7C, 0xB1, 0x69, 0x72,
      0x84, 0x60, 0x4D, 0x60, 0x27, 0x1B, 0xC5, 0x9A }
};

int main( void )
{
    int m, n, i, j;
    aes_context ctx;
    unsigned char buf[16];
    unsigned char key[32];

    for( m = 0; m < 2; m++ )
    {
        printf( "\n Rijndael Monte Carlo Test (ECB mode) - " );

        if( m == 0 ) printf( "encryption\n\n" );
        if( m == 1 ) printf( "decryption\n\n" );

        for( n = 0; n < 3; n++ )
        {
            printf( " Test %d, key size = %3d bits: ",
                    n + 1, 128 + n * 64 );

            fflush( stdout );

            memset( buf, 0, 16 );
            memset( key, 0, 16 + n * 8 );

            for( i = 0; i < 400; i++ )
            {
                aes_set_key( &ctx, key, 128 + n * 64 );

                for( j = 0; j < 9999; j++ )
                {
                    if( m == 0 ) aes_encrypt( &ctx, buf, buf );
                    if( m == 1 ) aes_decrypt( &ctx, buf, buf );
                }

                if( n > 0 )
                {
                    for( j = 0; j < (n << 3); j++ )
                    {
                        key[j] ^= buf[j + 16 - (n << 3)];
                    }
                }

                if( m == 0 ) aes_encrypt( &ctx, buf, buf );
                if( m == 1 ) aes_decrypt( &ctx, buf, buf );

                for( j = 0; j < 16; j++ )
                {
                    key[j + (n << 3)] ^= buf[j];
                }
            }

            if( ( m == 0 && memcmp( buf, AES_enc_test[n], 16 ) ) ||
                ( m == 1 && memcmp( buf, AES_dec_test[n], 16 ) ) )
            {
                printf( "failed!\n" );
                return( 1 );
            }

            printf( "passed.\n" );
        }
    }

    printf( "\n" );

    return( 0 );
}

#endif
时间: 2024-10-08 10:17:13

AES advanced encryption standard 3的相关文章

AES advanced encryption standard

// advanced encryption standard // author: karl malbrain, [email protected] typedef unsigned char uchar; #include <string.h> #include <memory.h> // AES only supports Nb=4 #define Nb 4 // number of columns in the state & expanded key #defin

AES advanced encryption standard 2

/* * FIPS-197 compliant AES implementation * * Copyright (C) 2006-2007 Christophe Devine * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redi

java AES 加密解密工具(Advanced Encryption Standard)

1.通用方法 package com.qlkj.hzd.commom.utils; import javax.crypto.*; import java.io.UnsupportedEncodingException; import java.security.*; /** * RSA相关工具类 * * @author vampire * @date 2018/10/12 下午5:33 */ public class EncrypAES { //KeyGenerator 提供对称密钥生成器的功能

DES,3DES,AES这三种对称密钥的区别与联系

DES:Data Encryption Standard(数据加密标准,又美国国密局,选中的IBM的方案,密钥长度为56,标准提出是要使用64位长的密钥,但是实际中DES算法只用了64位中的56位密钥,这一点是容易出错的) 3DES:trip DES(3级DES,是DES的升级版,主要是为了应对快速发展的计算机能力,能够在24小时内暴力破解传统的56位长度密钥的DES,而3DES相当于对统一数据块采用3次DES,3次DES使用的密钥如果完全不同,则密钥长度可以达到168位,大大延长了被暴力破解的

关于httpd 2.x,mod_auth_mysql模块的安装配置以及对aes加密的支持

前言 在之前的一篇博文<Apache httpd2.2版本以及2.4版本部分实验>的实验二里面,提到了协议认证使用了mod_auth_mysql.so模块,本文将阐述该模块的安装,配置,以及对于aes加密特性的支持. 基于开发者文档的安装步骤 注:在笔者的CentOS7测试环境下并不支持aes加密 首先从模块提供的官方站点下载mod_auth_mysql-3.0.0.tar.gz,并下载对应的补丁mod_auth_mysql_3.0.0_patch_apache2.4.diff,解压缩之后,将

Qt使用AES加密算法对字符串进行加密

因工作需要,需要对字符串进行加密处理,在网上找了很长时间,终于找到了一个可以使用的aes加密算法.其源代码采用c++编写而成,但其头文件引用windows.h,经过修改部分代码,将#include<windows.h>去掉,这样可是使用与多个编译器.下面的代码中列出了测试用的代码(中文出现乱码现象): 点击(此处)折叠或打开 int main(int argc, char *argv[]) { QCoreApplication a(argc, argv); TAesClass *aes = n

java-信息安全(二)-对称加密算法DES,3DES,AES,Blowfish,RC2,RC4

概述 信息安全基本概念: DES(Data Encryption Standard,数据加密标准) 3DES(Triple DES,三重数据加密算法(TDEA,Triple Data Encryption Algorithm)) AES(Advanced Encryption Standard,高级加密标准) Blowfish RC2 RC4 DES DES全称为Data Encryption Standard,即数据加密标准,是一种使用密钥加密的块算法,1977年被美国联邦政府的国家标准局确定

AES 加密算法的原理详解

AES 加密算法的原理详解 本教程摘选自 https://blog.csdn.net/qq_28205153/article/details/55798628 的原理部分. AES简介 高级加密标准(AES,Advanced Encryption Standard)为最常见的对称加密算法(微信小程序加密传输就是用这个加密算法的).对称加密算法也就是加密和解密用相同的密钥,具体的加密流程如下图: 下面简单介绍下各个部分的作用与意义: 明文P 没有经过加密的数据. 密钥K 用来加密明文的密码,在对称

python3 + Vue 应用 AES 数据加密

python3 + Vue 应用 AES 数据加密 高级加密标准(AES,Advanced Encryption Standard)为最常见的对称加密算法(微信小程序加密传输就是用这个加密算法的).对称加密算法也就是加密和解密用相同的密钥,具有以下几个特点: 1.最常用的对称加密算法 2.密钥建立时间短.灵敏性好.内存需求低 3.实际使用中,使用工作模式为CTR(最好用BC去实现),此工作模式需要引入IV参数(16位的字节数组) 4.密钥长度128/192/256,其中192与256需要配置无政